On the distribution of the order over residue classes
Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 121-128.

Voir la notice de l'article provenant de la source American Mathematical Society

For a fixed rational number $g\not \in \{-1,0,1\}$ and integers $a$ and $d$ we consider the set $N_g(a,d)$ of primes $p$ such that the order of $g$ modulo $p$ is congruent to $a (\textrm {mod~}d)$. Under the Generalized Riemann Hypothesis (GRH), it can be shown that the set $N_g(a,d)$ has a natural density $\delta _g(a,d)$. Arithmetical properties of $\delta _g(a,d)$ are described, and $\delta _g(a,d)$ is compared with $\delta (a,d)$: the average density of elements in a field of prime characteristic having order congruent to $a (\textrm {mod~}d)$. It transpires that $\delta _g(a,d)$ has a strong tendency to be equal to $\delta (a,d)$, or at least to be close to it.
DOI : 10.1090/S1079-6762-06-00168-5

Moree, Pieter 1

1 Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany
@article{ERAAMS_2006_12_a14,
     author = {Moree, Pieter},
     title = {On the distribution of the order over residue classes},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {12},
     year = {2006},
     doi = {10.1090/S1079-6762-06-00168-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00168-5/}
}
TY  - JOUR
AU  - Moree, Pieter
TI  - On the distribution of the order over residue classes
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2006
SP  - 121
EP  - 128
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00168-5/
DO  - 10.1090/S1079-6762-06-00168-5
ID  - ERAAMS_2006_12_a14
ER  - 
%0 Journal Article
%A Moree, Pieter
%T On the distribution of the order over residue classes
%J Electronic research announcements of the American Mathematical Society
%D 2006
%P 121-128
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00168-5/
%R 10.1090/S1079-6762-06-00168-5
%F ERAAMS_2006_12_a14
Moree, Pieter. On the distribution of the order over residue classes. Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 121-128. doi : 10.1090/S1079-6762-06-00168-5. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00168-5/

[1] Chinen, Koji, Murata, Leo On a distribution property of the residual order of 𝑎 (mod 𝑝). I J. Number Theory 2004 60 81

[2] Hooley, Christopher On Artin’s conjecture J. Reine Angew. Math. 1967 209 220

[3] Moree, Pieter On the average number of elements in a finite field with order or index in a prescribed residue class Finite Fields Appl. 2004 438 463

[4] Moree, Pieter Convoluted convolved Fibonacci numbers J. Integer Seq. 2004

[5] Moree, Pieter The formal series Witt transform Discrete Math. 2005 143 160

[6] Moree, Pieter On the distribution of the order and index of 𝑔 (mod 𝑝) over residue classes. I J. Number Theory 2005 238 271

[7] Moree, Pieter On the distribution of the order and index of 𝑔 (mod 𝑝) over residue classes. II J. Number Theory 2006 330 354

[8] Pappalardi, F. On Hooley’s theorem with weights Rend. Sem. Mat. Univ. Politec. Torino 1995 375 388

[9] Wiertelak, K. On the density of some sets of primes. IV Acta Arith. 1984 177 190

[10] Wiertelak, Kazimierz On the density of some sets of primes 𝑝, for which 𝑛∣𝑜𝑟𝑑_{𝑝}𝑎 Funct. Approx. Comment. Math. 2000 237 241

Cité par Sources :