Karpeshina, Yulia 1 ; Lee, Young-Ran 2
@article{10_1090_S1079_6762_06_00167_3,
author = {Karpeshina, Yulia and Lee, Young-Ran},
title = {On polyharmonic operators with limit-periodic potential in dimension two},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {113--120},
year = {2006},
volume = {12},
doi = {10.1090/S1079-6762-06-00167-3},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00167-3/}
}
TY - JOUR AU - Karpeshina, Yulia AU - Lee, Young-Ran TI - On polyharmonic operators with limit-periodic potential in dimension two JO - Electronic research announcements of the American Mathematical Society PY - 2006 SP - 113 EP - 120 VL - 12 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00167-3/ DO - 10.1090/S1079-6762-06-00167-3 ID - 10_1090_S1079_6762_06_00167_3 ER -
%0 Journal Article %A Karpeshina, Yulia %A Lee, Young-Ran %T On polyharmonic operators with limit-periodic potential in dimension two %J Electronic research announcements of the American Mathematical Society %D 2006 %P 113-120 %V 12 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00167-3/ %R 10.1090/S1079-6762-06-00167-3 %F 10_1090_S1079_6762_06_00167_3
Karpeshina, Yulia; Lee, Young-Ran. On polyharmonic operators with limit-periodic potential in dimension two. Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 113-120. doi: 10.1090/S1079-6762-06-00167-3
[1] , Almost periodic Schrödinger operators. I. Limit periodic potentials Comm. Math. Phys. 1981/82 101 120
[2] Perturbations of a Schrödinger operator with periodic potential Uspekhi Mat. Nauk 1981 203 204
[3] An example of a Schroedinger equation with almost periodic potential and nowhere dense spectrum Comment. Math. Helv. 1981 198 224
[4] Almost periodic Schrödinger operators: a review Adv. in Appl. Math. 1982 463 490
[5] , On the spectral theory of the one-dimensional Schrödinger operator with limit-periodic potential Dokl. Akad. Nauk SSSR 1984 1050 1053
[6] , Spectral theory of a class of one-dimensional Schrödinger operators with limit-periodic potentials Trudy Moskov. Mat. Obshch. 1988
[7] , Spectra of random and almost-periodic operators 1992
[8] , Transient and recurrent spectrum J. Functional Analysis 1981 1 31
[9] , The structure of a spectrum of the lacunary-limit-periodic Schrödinger operator Funktsional. Anal. i Prilozhen. 1984 90 91
[10] On a generic topological structure of the spectrum to one-dimensional Schrödinger operators with complex limit-periodic potentials Integral Equations Operator Theory 2004 393 430
[11] The density of states of selfadjoint elliptic operators with almost periodic coefficients Trudy Sem. Petrovsk. 1978 243 275
[12] Spectral theory and the index of elliptic operators with almost-periodic coefficients Uspekhi Mat. Nauk 1979 95 135
[13] , Almost periodic Schrödinger operators. II. The integrated density of states Duke Math. J. 1983 369 391
[14] Partial differential equations. VII 1994
[15] On the multidimensional discrete Schrödinger equation with a limit-periodic potential Teoret. Mat. Fiz. 1995 74 82
[16] Perturbation theory for classical Hamiltonian systems 1983 359 426
[17] , Stability of Hamiltonian systems at high energy J. Math. Phys. 1992 3367 3373
[18] , Semiclassical approximation for Schrödinger operators at high energy 1992 194 210
[19] , Methods of modern mathematical physics. I. Functional analysis 1972
[20] Perturbation theory for the Schrödinger operator with a periodic potential 1997
Cité par Sources :