On polyharmonic operators with limit-periodic potential in dimension two
Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 113-120.

Voir la notice de l'article provenant de la source American Mathematical Society

This is an announcement of the following results. We consider a polyharmonic operator $H=(-\Delta )^l+V(x)$ in dimension two with $l\geq 6$ and $V(x)$ being a limit-periodic potential. We prove that the spectrum of $H$ contains a semiaxis and there is a family of generalized eigenfunctions at every point of this semiaxis with the following properties. First, the eigenfunctions are close to plane waves at the high-energy region. Second, the isoenergetic curves in the space of momenta corresponding to these eigenfunctions have the form of slightly distorted circles with holes (Cantor-type structure). Third, the spectrum corresponding to the eigenfunctions (the semiaxis) is absolutely continuous.
DOI : 10.1090/S1079-6762-06-00167-3

Karpeshina, Yulia 1 ; Lee, Young-Ran 2

1 Department of Mathematics, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, Alabama 35294
2 Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, Illinois 61801
@article{ERAAMS_2006_12_a13,
     author = {Karpeshina, Yulia and Lee, Young-Ran},
     title = {On polyharmonic operators with limit-periodic potential in dimension two},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {113--120},
     publisher = {mathdoc},
     volume = {12},
     year = {2006},
     doi = {10.1090/S1079-6762-06-00167-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00167-3/}
}
TY  - JOUR
AU  - Karpeshina, Yulia
AU  - Lee, Young-Ran
TI  - On polyharmonic operators with limit-periodic potential in dimension two
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2006
SP  - 113
EP  - 120
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00167-3/
DO  - 10.1090/S1079-6762-06-00167-3
ID  - ERAAMS_2006_12_a13
ER  - 
%0 Journal Article
%A Karpeshina, Yulia
%A Lee, Young-Ran
%T On polyharmonic operators with limit-periodic potential in dimension two
%J Electronic research announcements of the American Mathematical Society
%D 2006
%P 113-120
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00167-3/
%R 10.1090/S1079-6762-06-00167-3
%F ERAAMS_2006_12_a13
Karpeshina, Yulia; Lee, Young-Ran. On polyharmonic operators with limit-periodic potential in dimension two. Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 113-120. doi : 10.1090/S1079-6762-06-00167-3. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00167-3/

[1] Avron, Joseph, Simon, Barry Almost periodic Schrödinger operators. I. Limit periodic potentials Comm. Math. Phys. 1981/82 101 120

[2] Chulaevskiĭ, V. A. Perturbations of a Schrödinger operator with periodic potential Uspekhi Mat. Nauk 1981 203 204

[3] Moser, Jürgen An example of a Schroedinger equation with almost periodic potential and nowhere dense spectrum Comment. Math. Helv. 1981 198 224

[4] Simon, Barry Almost periodic Schrödinger operators: a review Adv. in Appl. Math. 1982 463 490

[5] Pastur, L. A., Tkachenko, V. A. On the spectral theory of the one-dimensional Schrödinger operator with limit-periodic potential Dokl. Akad. Nauk SSSR 1984 1050 1053

[6] Pastur, L. A., Tkachenko, V. A. Spectral theory of a class of one-dimensional Schrödinger operators with limit-periodic potentials Trudy Moskov. Mat. Obshch. 1988

[7] Pastur, Leonid, Figotin, Alexander Spectra of random and almost-periodic operators 1992

[8] Avron, Joseph E., Simon, Barry Transient and recurrent spectrum J. Functional Analysis 1981 1 31

[9] Molchanov, S. A., Chulaevskiĭ, V. A. The structure of a spectrum of the lacunary-limit-periodic Schrödinger operator Funktsional. Anal. i Prilozhen. 1984 90 91

[10] Zelenko, Leonid On a generic topological structure of the spectrum to one-dimensional Schrödinger operators with complex limit-periodic potentials Integral Equations Operator Theory 2004 393 430

[11] Šubin, M. A. The density of states of selfadjoint elliptic operators with almost periodic coefficients Trudy Sem. Petrovsk. 1978 243 275

[12] Šubin, M. A. Spectral theory and the index of elliptic operators with almost-periodic coefficients Uspekhi Mat. Nauk 1979 95 135

[13] Avron, Joseph, Simon, Barry Almost periodic Schrödinger operators. II. The integrated density of states Duke Math. J. 1983 369 391

[14] Partial differential equations. VII 1994

[15] Chuburin, Yu. P. On the multidimensional discrete Schrödinger equation with a limit-periodic potential Teoret. Mat. Fiz. 1995 74 82

[16] Gallavotti, Giovanni Perturbation theory for classical Hamiltonian systems 1983 359 426

[17] Thomas, Lawrence E., Wassell, Stephen R. Stability of Hamiltonian systems at high energy J. Math. Phys. 1992 3367 3373

[18] Thomas, Lawrence E., Wassell, Stephen R. Semiclassical approximation for Schrödinger operators at high energy 1992 194 210

[19] Reed, Michael, Simon, Barry Methods of modern mathematical physics. I. Functional analysis 1972

[20] Karpeshina, Yulia E. Perturbation theory for the Schrödinger operator with a periodic potential 1997

Cité par Sources :