Density, overcompleteness, and localization of frames
Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 71-86.

Voir la notice de l'article provenant de la source American Mathematical Society

This work presents a quantitative framework for describing the overcompleteness of a large class of frames. It introduces notions of localization and approximation between two frames $\mathcal {F} = \{f_i\}_{i \in I}$ and $\mathcal {E} = \{e_j\}_{j \in G}$ ($G$ a discrete abelian group), relating the decay of the expansion of the elements of $\mathcal {F}$ in terms of the elements of $\mathcal {E}$ via a map $a \colon I \to G$. A fundamental set of equalities are shown between three seemingly unrelated quantities: the relative measure of $\mathcal {F}$, the relative measure of $\mathcal {E}$—both of which are determined by certain averages of inner products of frame elements with their corresponding dual frame elements—and the density of the set $a(I)$ in $G$. Fundamental new results are obtained on the excess and overcompleteness of frames, on the relationship between frame bounds and density, and on the structure of the dual frame of a localized frame. These abstract results yield an array of new implications for irregular Gabor frames. Various Nyquist density results for Gabor frames are recovered as special cases, but in the process both their meaning and implications are clarified. New results are obtained on the excess and overcompleteness of Gabor frames, on the relationship between frame bounds and density, and on the structure of the dual frame of an irregular Gabor frame. More generally, these results apply both to Gabor frames and to systems of Gabor molecules, whose elements share only a common envelope of concentration in the time-frequency plane.
DOI : 10.1090/S1079-6762-06-00163-6

Balan, Radu 1 ; Casazza, Peter 2 ; Heil, Christopher 3 ; Landau, Zeph 4

1 Siemens Corporate Research, 755 College Road East, Princeton, New Jersey 08540
2 Department of Mathematics, University of Missouri, Columbia, Missouri 65211
3 School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
4 Department of Mathematics R8133, The City College of New York, Convent Avenue at 138th Street, New York, New York 10031
@article{ERAAMS_2006_12_a9,
     author = {Balan, Radu and Casazza, Peter and Heil, Christopher and Landau, Zeph},
     title = {Density, overcompleteness, and localization of frames},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {71--86},
     publisher = {mathdoc},
     volume = {12},
     year = {2006},
     doi = {10.1090/S1079-6762-06-00163-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00163-6/}
}
TY  - JOUR
AU  - Balan, Radu
AU  - Casazza, Peter
AU  - Heil, Christopher
AU  - Landau, Zeph
TI  - Density, overcompleteness, and localization of frames
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2006
SP  - 71
EP  - 86
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00163-6/
DO  - 10.1090/S1079-6762-06-00163-6
ID  - ERAAMS_2006_12_a9
ER  - 
%0 Journal Article
%A Balan, Radu
%A Casazza, Peter
%A Heil, Christopher
%A Landau, Zeph
%T Density, overcompleteness, and localization of frames
%J Electronic research announcements of the American Mathematical Society
%D 2006
%P 71-86
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00163-6/
%R 10.1090/S1079-6762-06-00163-6
%F ERAAMS_2006_12_a9
Balan, Radu; Casazza, Peter; Heil, Christopher; Landau, Zeph. Density, overcompleteness, and localization of frames. Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 71-86. doi : 10.1090/S1079-6762-06-00163-6. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00163-6/

[1] Baskakov, A. G. Wiener’s theorem and asymptotic estimates for elements of inverse matrices Funktsional. Anal. i Prilozhen. 1990 64 65

[2] Casazza, Peter G., Christensen, Ole, Lindner, Alexander M., Vershynin, Roman Frames and the Feichtinger conjecture Proc. Amer. Math. Soc. 2005 1025 1033

[3] Casazza, Peter G., Tremain, Janet Crandell The Kadison-Singer problem in mathematics and engineering Proc. Natl. Acad. Sci. USA 2006 2032 2039

[4] Christensen, Ole, Deng, Baiqiao, Heil, Christopher Density of Gabor frames Appl. Comput. Harmon. Anal. 1999 292 304

[5] Christensen, Ole, Favier, Sergio, Zó, Felipe Irregular wavelet frames and Gabor frames Approx. Theory Appl. (N.S.) 2001 90 101

[6] Daubechies, Ingrid The wavelet transform, time-frequency localization and signal analysis IEEE Trans. Inform. Theory 1990 961 1005

[7] Daubechies, Ingrid Ten lectures on wavelets 1992

[8] Daubechies, Ingrid, Landau, H. J., Landau, Zeph Gabor time-frequency lattices and the Wexler-Raz identity J. Fourier Anal. Appl. 1995 437 478

[9] Duffin, R. J., Schaeffer, A. C. A class of nonharmonic Fourier series Trans. Amer. Math. Soc. 1952 341 366

[10] Feichtinger, H. G. Banach convolution algebras of Wiener type 1983 509 524

[11] Feichtinger, Hans G. On a new Segal algebra Monatsh. Math. 1981 269 289

[12] Feichtinger, Hans G., Gröchenig, K. H. Banach spaces related to integrable group representations and their atomic decompositions. I J. Funct. Anal. 1989 307 340

[13] Feichtinger, Hans G., Gröchenig, K. H. Banach spaces related to integrable group representations and their atomic decompositions. II Monatsh. Math. 1989 129 148

[14] Gohberg, I., Kaashoek, M. A., Woerdeman, H. J. The band method for positive and contractive extension problems J. Operator Theory 1989 109 155

[15] Goyal, Vivek K., Kovačević, Jelena, Kelner, Jonathan A. Quantized frame expansions with erasures Appl. Comput. Harmon. Anal. 2001 203 233

[16] Gröchenig, Karlheinz Foundations of time-frequency analysis 2001

[17] Gröchenig, Karlheinz Localized frames are finite unions of Riesz sequences Adv. Comput. Math. 2003 149 157

[18] Gröchenig, Karlheinz Localization of frames, Banach frames, and the invertibility of the frame operator J. Fourier Anal. Appl. 2004 105 132

[19] Fornasier, Massimo, Gröchenig, Karlheinz Intrinsic localization of frames Constr. Approx. 2005 395 415

[20] Gröchenig, Karlheinz, Leinert, Michael Wiener’s lemma for twisted convolution and Gabor frames J. Amer. Math. Soc. 2004 1 18

[21] Gröchenig, K., Razafinjatovo, H. On Landau’s necessary density conditions for sampling and interpolation of band-limited functions J. London Math. Soc. (2) 1996 557 565

[22] Han, Deguang, Wang, Yang Lattice tiling and the Weyl-Heisenberg frames Geom. Funct. Anal. 2001 742 758

[23] Janssen, A. J. E. M. Duality and biorthogonality for Weyl-Heisenberg frames J. Fourier Anal. Appl. 1995 403 436

[24] Janssen, A. J. E. M. A density theorem for time-continuous filter banks 1998 513 523

[25] Liu, Youming, Wang, Yang The uniformity of non-uniform Gabor bases Adv. Comput. Math. 2003 345 355

[26] Ramanathan, Jayakumar, Steger, Tim Incompleteness of sparse coherent states Appl. Comput. Harmon. Anal. 1995 148 153

[27] Shokrollahi, Amin, Hassibi, Babak, Hochwald, Bertrand M., Sweldens, Wim Representation theory for high-rate multiple-antenna code design IEEE Trans. Inform. Theory 2001 2335 2367

[28] Sjöstrand, J. Wiener type algebras of pseudodifferential operators 1995

[29] Strohmer, Thomas, Heath, Robert W., Jr. Grassmannian frames with applications to coding and communication Appl. Comput. Harmon. Anal. 2003 257 275

[30] Sun, Wenchang, Zhou, Xingwei Irregular wavelet/Gabor frames Appl. Comput. Harmon. Anal. 2002 63 76

[31] Wolfe, Patrick J., Godsill, Simon J., Ng, Wee-Jing Bayesian variable selection and regularization for time-frequency surface estimation J. R. Stat. Soc. Ser. B Stat. Methodol. 2004 575 589

[32] Young, Robert M. An introduction to nonharmonic Fourier series 2001

Cité par Sources :