Voir la notice de l'article provenant de la source American Mathematical Society
Wu, Delin 1 ; Zhong, Chengkui 1
@article{ERAAMS_2006_12_a8, author = {Wu, Delin and Zhong, Chengkui}, title = {Estimates on the dimension of an attractor for a nonclassical hyperbolic equation}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {63--70}, publisher = {mathdoc}, volume = {12}, year = {2006}, doi = {10.1090/S1079-6762-06-00162-4}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00162-4/} }
TY - JOUR AU - Wu, Delin AU - Zhong, Chengkui TI - Estimates on the dimension of an attractor for a nonclassical hyperbolic equation JO - Electronic research announcements of the American Mathematical Society PY - 2006 SP - 63 EP - 70 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00162-4/ DO - 10.1090/S1079-6762-06-00162-4 ID - ERAAMS_2006_12_a8 ER -
%0 Journal Article %A Wu, Delin %A Zhong, Chengkui %T Estimates on the dimension of an attractor for a nonclassical hyperbolic equation %J Electronic research announcements of the American Mathematical Society %D 2006 %P 63-70 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00162-4/ %R 10.1090/S1079-6762-06-00162-4 %F ERAAMS_2006_12_a8
Wu, Delin; Zhong, Chengkui. Estimates on the dimension of an attractor for a nonclassical hyperbolic equation. Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 63-70. doi : 10.1090/S1079-6762-06-00162-4. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00162-4/
[1] Mathematical analysis of dynamic models of suspension bridges SIAM J. Appl. Math. 1998 853 874
,[2] On dimension of attractors of differential inclusions and reaction-diffusion equations Discrete Contin. Dynam. Systems 1999 515 528
,[3] On the fractal dimension of invariant sets: applications to Navier-Stokes equations Discrete Contin. Dyn. Syst. 2004 117 135
,[4] Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations Comm. Pure Appl. Math. 1985 1 27
,[5] Finite-dimensional exponential attractors for semilinear wave equations with damping J. Math. Anal. Appl. 1992 408 419
, ,[6] Attractors for damped nonlinear hyperbolic equations J. Math. Pures Appl. (9) 1987 273 319
,[7] Existence of a global attractor for semilinear dissipative wave equations on 𝑅^{𝑁} J. Differential Equations 1999 183 205
,[8] Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on ℝ^{ℕ} Discrete Contin. Dyn. Syst. 2002 939 951
,[9] Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis SIAM Rev. 1990 537 578
,[10] Infinite-dimensional dynamical systems 2001
[11] Infinite-dimensional dynamical systems in mechanics and physics 1997
[12] On dimension of the global attractor for damped nonlinear wave equations J. Math. Phys. 1999 1432 1438
Cité par Sources :