Estimates on the dimension of an attractor for a nonclassical hyperbolic equation
Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 63-70.

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper, we estimate the dimension of a global attractor for a nonclassical hyperbolic equation with a viscoelastic damping term in Hilbert spaces $H_{0}^{2}\times L^{2}$ and $D(A)\times H_{0}^{2}$, where $D(A)=\{v\in H_{0}^{2}\mid Av\in L^{2}\}$ and $A=\Delta ^{2}$. We obtain an explicit formula of the upper bound of the dimension of the attractor. The obtained dimension decreases as damping grows and is uniformly bounded for large damping, which conforms to physical intuition.
DOI : 10.1090/S1079-6762-06-00162-4

Wu, Delin 1 ; Zhong, Chengkui 1

1 School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, P. R. China
@article{ERAAMS_2006_12_a8,
     author = {Wu, Delin and Zhong, Chengkui},
     title = {Estimates on the dimension of an attractor for a nonclassical hyperbolic equation},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {63--70},
     publisher = {mathdoc},
     volume = {12},
     year = {2006},
     doi = {10.1090/S1079-6762-06-00162-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00162-4/}
}
TY  - JOUR
AU  - Wu, Delin
AU  - Zhong, Chengkui
TI  - Estimates on the dimension of an attractor for a nonclassical hyperbolic equation
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2006
SP  - 63
EP  - 70
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00162-4/
DO  - 10.1090/S1079-6762-06-00162-4
ID  - ERAAMS_2006_12_a8
ER  - 
%0 Journal Article
%A Wu, Delin
%A Zhong, Chengkui
%T Estimates on the dimension of an attractor for a nonclassical hyperbolic equation
%J Electronic research announcements of the American Mathematical Society
%D 2006
%P 63-70
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00162-4/
%R 10.1090/S1079-6762-06-00162-4
%F ERAAMS_2006_12_a8
Wu, Delin; Zhong, Chengkui. Estimates on the dimension of an attractor for a nonclassical hyperbolic equation. Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 63-70. doi : 10.1090/S1079-6762-06-00162-4. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00162-4/

[1] Ahmed, N. U., Harbi, H. Mathematical analysis of dynamic models of suspension bridges SIAM J. Appl. Math. 1998 853 874

[2] Balibrea, Francisco, Valero, José On dimension of attractors of differential inclusions and reaction-diffusion equations Discrete Contin. Dynam. Systems 1999 515 528

[3] Chepyzhov, V. V., Ilyin, A. A. On the fractal dimension of invariant sets: applications to Navier-Stokes equations Discrete Contin. Dyn. Syst. 2004 117 135

[4] Constantin, P., Foias, C. Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations Comm. Pure Appl. Math. 1985 1 27

[5] Eden, A., Milani, A. J., Nicolaenko, B. Finite-dimensional exponential attractors for semilinear wave equations with damping J. Math. Anal. Appl. 1992 408 419

[6] Ghidaglia, J.-M., Temam, R. Attractors for damped nonlinear hyperbolic equations J. Math. Pures Appl. (9) 1987 273 319

[7] Karachalios, Nikos I., Stavrakakis, Nikos M. Existence of a global attractor for semilinear dissipative wave equations on 𝑅^{𝑁} J. Differential Equations 1999 183 205

[8] Karachalios, Nikos I., Stavrakakis, Nikos M. Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on ℝ^{ℕ} Discrete Contin. Dyn. Syst. 2002 939 951

[9] Lazer, A. C., Mckenna, P. J. Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis SIAM Rev. 1990 537 578

[10] Robinson, James C. Infinite-dimensional dynamical systems 2001

[11] Temam, Roger Infinite-dimensional dynamical systems in mechanics and physics 1997

[12] Zhou, Shengfan On dimension of the global attractor for damped nonlinear wave equations J. Math. Phys. 1999 1432 1438

Cité par Sources :