Cobounding odd cycle colorings
Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 53-55.

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that the $(n-2)$nd power of the Stiefel-Whitney class of the space of all $n$-colorings of an odd cycle is $0$ by presenting a cochain whose coboundary is the desired power of the class. This gives a very short self-contained combinatorial proof of a conjecture by Babson and the author.
DOI : 10.1090/S1079-6762-06-00161-2

Kozlov, Dmitry 1

1 Institute of Theoretical Computer Science, ETH Zürich, Switzerland
@article{ERAAMS_2006_12_a6,
     author = {Kozlov, Dmitry},
     title = {Cobounding odd cycle colorings},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {53--55},
     publisher = {mathdoc},
     volume = {12},
     year = {2006},
     doi = {10.1090/S1079-6762-06-00161-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00161-2/}
}
TY  - JOUR
AU  - Kozlov, Dmitry
TI  - Cobounding odd cycle colorings
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2006
SP  - 53
EP  - 55
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00161-2/
DO  - 10.1090/S1079-6762-06-00161-2
ID  - ERAAMS_2006_12_a6
ER  - 
%0 Journal Article
%A Kozlov, Dmitry
%T Cobounding odd cycle colorings
%J Electronic research announcements of the American Mathematical Society
%D 2006
%P 53-55
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00161-2/
%R 10.1090/S1079-6762-06-00161-2
%F ERAAMS_2006_12_a6
Kozlov, Dmitry. Cobounding odd cycle colorings. Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 53-55. doi : 10.1090/S1079-6762-06-00161-2. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00161-2/

[1] Babson, Eric, Kozlov, Dmitry N. Topological obstructions to graph colorings Electron. Res. Announc. Amer. Math. Soc. 2003 61 68

Cité par Sources :