Voir la notice de l'article provenant de la source American Mathematical Society
Ginzburg, David 1 ; Hundley, Joseph 2
@article{ERAAMS_2006_12_a7, author = {Ginzburg, David and Hundley, Joseph}, title = {A new tower of {Rankin-Selberg} integrals}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {56--62}, publisher = {mathdoc}, volume = {12}, year = {2006}, doi = {10.1090/S1079-6762-06-00160-0}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00160-0/} }
TY - JOUR AU - Ginzburg, David AU - Hundley, Joseph TI - A new tower of Rankin-Selberg integrals JO - Electronic research announcements of the American Mathematical Society PY - 2006 SP - 56 EP - 62 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00160-0/ DO - 10.1090/S1079-6762-06-00160-0 ID - ERAAMS_2006_12_a7 ER -
%0 Journal Article %A Ginzburg, David %A Hundley, Joseph %T A new tower of Rankin-Selberg integrals %J Electronic research announcements of the American Mathematical Society %D 2006 %P 56-62 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00160-0/ %R 10.1090/S1079-6762-06-00160-0 %F ERAAMS_2006_12_a7
Ginzburg, David; Hundley, Joseph. A new tower of Rankin-Selberg integrals. Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 56-62. doi : 10.1090/S1079-6762-06-00160-0. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00160-0/
[1] A relation between automorphic representations of 𝐺𝐿(2) and 𝐺𝐿(3) Ann. Sci. École Norm. Sup. (4) 1978 471 542
,[2] A Rankin-Selberg integral for the adjoint representation of 𝐺𝐿₃ Invent. Math. 1991 571 588
[3] On standard 𝐿-functions for 𝐸₆ and 𝐸₇ J. Reine Angew. Math. 1995 101 131
[4] Periods and liftings: from 𝐺₂ to 𝐶₃ Israel J. Math. 2001 29 59
,[5] A tower of Rankin-Selberg integrals Internat. Math. Res. Notices 1994
,[6] On the automorphic theta representation for simply laced groups Israel J. Math. 1997 61 116
, ,[7] Exterior square 𝐿-functions 1990 143 226
,[8] Some remarks on nilpotent orbits J. Algebra 1980 190 213
[9] On certain 𝐿-functions Amer. J. Math. 1981 297 355
Cité par Sources :