Peripheral fillings of relatively hyperbolic groups
Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 44-52.

Voir la notice de l'article provenant de la source American Mathematical Society

A group-theoretic version of Dehn surgery is studied. Starting with an arbitrary relatively hyperbolic group $G$ we define a peripheral filling procedure, which produces quotients of $G$ by imitating the effect of the Dehn filling of a complete finite-volume hyperbolic 3-manifold $M$ on the fundamental group $\pi _1(M)$. The main result of the paper is an algebraic counterpart of Thurston’s hyperbolic Dehn surgery theorem. We also show that peripheral subgroups of $G$ “almost” have the Congruence Extension Property and the group $G$ is approximated (in an algebraic sense) by its quotients obtained by peripheral fillings.
DOI : 10.1090/S1079-6762-06-00159-4

Osin, D. 1

1 Department of Mathematics, City College of CUNY, New York, NY 10031
@article{ERAAMS_2006_12_a5,
     author = {Osin, D.},
     title = {Peripheral fillings of relatively hyperbolic groups},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {44--52},
     publisher = {mathdoc},
     volume = {12},
     year = {2006},
     doi = {10.1090/S1079-6762-06-00159-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00159-4/}
}
TY  - JOUR
AU  - Osin, D.
TI  - Peripheral fillings of relatively hyperbolic groups
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2006
SP  - 44
EP  - 52
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00159-4/
DO  - 10.1090/S1079-6762-06-00159-4
ID  - ERAAMS_2006_12_a5
ER  - 
%0 Journal Article
%A Osin, D.
%T Peripheral fillings of relatively hyperbolic groups
%J Electronic research announcements of the American Mathematical Society
%D 2006
%P 44-52
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00159-4/
%R 10.1090/S1079-6762-06-00159-4
%F ERAAMS_2006_12_a5
Osin, D. Peripheral fillings of relatively hyperbolic groups. Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 44-52. doi : 10.1090/S1079-6762-06-00159-4. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00159-4/

[1] Alonso, Juan M., Bridson, Martin R. Semihyperbolic groups Proc. London Math. Soc. (3) 1995 56 114

[2] Blok, W. J., Pigozzi, D. On the congruence extension property Algebra Universalis 1997 391 394

[3] Druţu, Cornelia, Sapir, Mark Tree-graded spaces and asymptotic cones of groups Topology 2005 959 1058

[4] Eberlein, Patrick Lattices in spaces of nonpositive curvature Ann. of Math. (2) 1980 435 476

[5] Epstein, David B. A., Cannon, James W., Holt, Derek F., Levy, Silvio V. F., Paterson, Michael S., Thurston, William P. Word processing in groups 1992

[6] Farb, B. Relatively hyperbolic groups Geom. Funct. Anal. 1998 810 840

[7] Gromov, M. Hyperbolic groups 1987 75 263

[8] Guirardel, Vincent Limit groups and groups acting freely on ℝⁿ-trees Geom. Topol. 2004 1427 1470

[9] Hall, Philip The Edmonton notes on nilpotent groups 1969

[10] Higman, Graham, Neumann, B. H., Neumann, Hanna Embedding theorems for groups J. London Math. Soc. 1949 247 254

[11] Ivanov, S. V., Ol′Shanskiĭ, A. Yu. Hyperbolic groups and their quotients of bounded exponents Trans. Amer. Math. Soc. 1996 2091 2138

[12] Karrass, A., Magnus, W., Solitar, D. Elements of finite order in groups with a single defining relation Comm. Pure Appl. Math. 1960 57 66

[13] Kharlampovich, O., Myasnikov, A. Description of fully residually free groups and irreducible affine varieties over a free group 1999 71 80

[14] Lyndon, Roger C., Schupp, Paul E. Combinatorial group theory 1977

[15] Ol′Shanskiĭ, A. Yu. Geometry of defining relations in groups 1991

[16] Ol′Shanskiĭ, A. Yu. Periodic quotient groups of hyperbolic groups Mat. Sb. 1991 543 567

[17] Ol′Shanskiĭ, A. Yu. 𝑆𝑄-universality of hyperbolic groups Mat. Sb. 1995 119 132

[18] Ol′Shanskii, Alexander Yu., Sapir, Mark V. Non-amenable finitely presented torsion-by-cyclic groups Publ. Math. Inst. Hautes Études Sci. 2002

[19] Osin, D. Asymptotic dimension of relatively hyperbolic groups Int. Math. Res. Not. 2005 2143 2161

[20] Rolfsen, Dale Knots and links 1976

[21] Sela, Zlil Diophantine geometry over groups. I. Makanin-Razborov diagrams Publ. Math. Inst. Hautes Études Sci. 2001 31 105

[22] Stallings, John Group theory and three-dimensional manifolds 1971

[23] Tang, Xilin Semigroups with the congruence extension property Semigroup Forum 1998 228 264

[24] Thurston, William P. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry Bull. Amer. Math. Soc. (N.S.) 1982 357 381

[25] Tukia, Pekka Convergence groups and Gromov’s metric hyperbolic spaces New Zealand J. Math. 1994 157 187

[26] Wise, Daniel T. The residual finiteness of negatively curved polygons of finite groups Invent. Math. 2002 579 617

[27] Wu, Mingfen The fuzzy congruence extension property in groups JP J. Algebra Number Theory Appl. 2002 153 160

[28] Yaman, Asli A topological characterisation of relatively hyperbolic groups J. Reine Angew. Math. 2004 41 89

[29] Yu, Guoliang The Novikov conjecture for groups with finite asymptotic dimension Ann. of Math. (2) 1998 325 355

Cité par Sources :