Picard-Hayman behavior of derivatives of meromorphic functions with multiple zeros
Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 37-43.

Voir la notice de l'article provenant de la source American Mathematical Society

The derivative of a transcendental meromorphic function all of whose zeros are multiple assumes every nonzero complex value infinitely often.
DOI : 10.1090/S1079-6762-06-00158-2

Nevo, Shahar 1 ; Pang, Xuecheng 2 ; Zalcman, Lawrence 1

1 Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel
2 Department of Mathematics, East China Normal University, Shanghai 20062, P. R. China
@article{ERAAMS_2006_12_a4,
     author = {Nevo, Shahar and Pang, Xuecheng and Zalcman, Lawrence},
     title = {Picard-Hayman behavior of derivatives of meromorphic functions with multiple zeros},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {37--43},
     publisher = {mathdoc},
     volume = {12},
     year = {2006},
     doi = {10.1090/S1079-6762-06-00158-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00158-2/}
}
TY  - JOUR
AU  - Nevo, Shahar
AU  - Pang, Xuecheng
AU  - Zalcman, Lawrence
TI  - Picard-Hayman behavior of derivatives of meromorphic functions with multiple zeros
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2006
SP  - 37
EP  - 43
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00158-2/
DO  - 10.1090/S1079-6762-06-00158-2
ID  - ERAAMS_2006_12_a4
ER  - 
%0 Journal Article
%A Nevo, Shahar
%A Pang, Xuecheng
%A Zalcman, Lawrence
%T Picard-Hayman behavior of derivatives of meromorphic functions with multiple zeros
%J Electronic research announcements of the American Mathematical Society
%D 2006
%P 37-43
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00158-2/
%R 10.1090/S1079-6762-06-00158-2
%F ERAAMS_2006_12_a4
Nevo, Shahar; Pang, Xuecheng; Zalcman, Lawrence. Picard-Hayman behavior of derivatives of meromorphic functions with multiple zeros. Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 37-43. doi : 10.1090/S1079-6762-06-00158-2. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00158-2/

[1] Bergweiler, Walter, Eremenko, Alexandre On the singularities of the inverse to a meromorphic function of finite order Rev. Mat. Iberoamericana 1995 355 373

[2] Chen, Huai Hui, Fang, Ming Liang The value distribution of 𝑓ⁿ𝑓’ Sci. China Ser. A 1995 789 798

[3] Hayman, W. K. Picard values of meromorphic functions and their derivatives Ann. of Math. (2) 1959 9 42

[4] Ku, Yong Xing A criterion for normality of families of meromorphic functions Sci. Sinica 1979 267 274

[5] Pang, Xuecheng, Nevo, Shahar, Zalcman, Lawrence Quasinormal families of meromorphic functions Rev. Mat. Iberoamericana 2005 249 262

[6] Wang, Yuefei, Fang, Mingliang Picard values and normal families of meromorphic functions with multiple zeros Acta Math. Sinica (N.S.) 1998 17 26

[7] Zalcman, Lawrence Normal families: new perspectives Bull. Amer. Math. Soc. (N.S.) 1998 215 230

Cité par Sources :