Vanishing of the entropy pseudonorm for certain integrable systems
Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 19-28.

Voir la notice de l'article provenant de la source American Mathematical Society

We introduce the notion of entropy pseudonorm for an action of $\mathbb {R}^n$ and prove that it vanishes for the group actions associated with a large class of integrable Hamiltonian systems.
DOI : 10.1090/S1079-6762-06-00156-9

Kruglikov, Boris 1 ; Matveev, Vladimir 2

1 Institute of Mathematics and Statistics, University of Tromsø, Tromsø90-37, Norway
2 Mathematisches Institut der Albert-Ludwigs-Universität, Eckerstraße-1, Freiburg 79104, Germany
@article{ERAAMS_2006_12_a2,
     author = {Kruglikov, Boris and Matveev, Vladimir},
     title = {Vanishing of the entropy pseudonorm for certain integrable systems},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {19--28},
     publisher = {mathdoc},
     volume = {12},
     year = {2006},
     doi = {10.1090/S1079-6762-06-00156-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00156-9/}
}
TY  - JOUR
AU  - Kruglikov, Boris
AU  - Matveev, Vladimir
TI  - Vanishing of the entropy pseudonorm for certain integrable systems
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2006
SP  - 19
EP  - 28
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00156-9/
DO  - 10.1090/S1079-6762-06-00156-9
ID  - ERAAMS_2006_12_a2
ER  - 
%0 Journal Article
%A Kruglikov, Boris
%A Matveev, Vladimir
%T Vanishing of the entropy pseudonorm for certain integrable systems
%J Electronic research announcements of the American Mathematical Society
%D 2006
%P 19-28
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00156-9/
%R 10.1090/S1079-6762-06-00156-9
%F ERAAMS_2006_12_a2
Kruglikov, Boris; Matveev, Vladimir. Vanishing of the entropy pseudonorm for certain integrable systems. Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 19-28. doi : 10.1090/S1079-6762-06-00156-9. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00156-9/

[1] Arnol′D, V. I. Matematicheskie metody klassicheskoĭ mekhaniki 1989 472

[2] Benenti, S. Inertia tensors and Stäckel systems in the Euclidean spaces Rend. Sem. Mat. Univ. Politec. Torino 1992

[3] Benenti, S. An outline of the geometrical theory of the separation of variables in the Hamilton-Jacobi and Schrödinger equations 2002 10 17

[4] Benenti, Sergio Special symmetric two-tensors, equivalent dynamical systems, cofactor and bi-cofactor systems Acta Appl. Math. 2005 33 91

[5] Bolsinov, A. V., Fomenko, A. T. Integrable Hamiltonian systems 2004

[6] Bolsinov, Alexey V., Matveev, Vladimir S. Geometrical interpretation of Benenti systems J. Geom. Phys. 2003 489 506

[7] Bolsinov, Alexey V., Taimanov, Iskander A. Integrable geodesic flows with positive topological entropy Invent. Math. 2000 639 650

[8] Bowen, Rufus Entropy for group endomorphisms and homogeneous spaces Trans. Amer. Math. Soc. 1971 401 414

[9] Butler, L. T., Paternain, G. P. Collective geodesic flows Ann. Inst. Fourier (Grenoble) 2003 265 308

[10] Butler, Leo T. Toda lattices and positive-entropy integrable systems Invent. Math. 2004 515 549

[11] Crampin, M., Sarlet, W., Thompson, G. Bi-differential calculi, bi-Hamiltonian systems and conformal Killing tensors J. Phys. A 2000 8755 8770

[12] Eliasson, L. H. Normal forms for Hamiltonian systems with Poisson commuting integrals—elliptic case Comment. Math. Helv. 1990 4 35

[13] Conze, J. P. Entropie d’un groupe abélien de transformations Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1972/73 11 30

[14] Guillemin, Victor, Sternberg, Shlomo On collective complete integrability according to the method of Thimm Ergodic Theory Dynam. Systems 1983 219 230

[15] Hofmann, K. H., Stojanov, L. N. Topological entropy of group and semigroup actions Adv. Math. 1995 54 98

[16] Hu, Hu Yi Some ergodic properties of commuting diffeomorphisms Ergodic Theory Dynam. Systems 1993 73 100

[17] Ibort, A., Magri, F., Marmo, G. Bihamiltonian structures and Stäckel separability J. Geom. Phys. 2000 210 228

[18] Ito, Hidekazu Action-angle coordinates at singularities for analytic integrable systems Math. Z. 1991 363 407

[19] Katok, Anatole, Hasselblatt, Boris Introduction to the modern theory of dynamical systems 1995

[20] Kruglikov, B. Examples of integrable sub-Riemannian geodesic flows J. Dynam. Control Systems 2002 323 340

[21] Lundmark, Hans, Rauch-Wojciechowski, Stefan Driven Newton equations and separable time-dependent potentials J. Math. Phys. 2002 6166 6194

[22] Matveev, V. S., Topalov, P. Ĭ. Trajectory equivalence and corresponding integrals Regul. Chaotic Dyn. 1998 30 45

[23] Matveev, Vladimir S. Hyperbolic manifolds are geodesically rigid Invent. Math. 2003 579 609

[24] Matveev, Vladimir S. Three-dimensional manifolds having metrics with the same geodesics Topology 2003 1371 1395

[25] Matveev, Vladimir S. Projectively equivalent metrics on the torus Differential Geom. Appl. 2004 251 265

[26] Paternain, Gabriel P. On the topology of manifolds with completely integrable geodesic flows Ergodic Theory Dynam. Systems 1992 109 121

[27] Paternain, Gabriel P. On the topology of manifolds with completely integrable geodesic flows. II J. Geom. Phys. 1994 289 298

[28] Paternain, Gabriel P. Geodesic flows 1999

[29] Pesin, Yakov B. Dimension theory in dynamical systems 1997

[30] Taĭmanov, I. A. Topology of Riemannian manifolds with integrable geodesic flows Trudy Mat. Inst. Steklov. 1994 150 163

Cité par Sources :