Voir la notice de l'article provenant de la source American Mathematical Society
Kruglikov, Boris 1 ; Matveev, Vladimir 2
@article{ERAAMS_2006_12_a2, author = {Kruglikov, Boris and Matveev, Vladimir}, title = {Vanishing of the entropy pseudonorm for certain integrable systems}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {19--28}, publisher = {mathdoc}, volume = {12}, year = {2006}, doi = {10.1090/S1079-6762-06-00156-9}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00156-9/} }
TY - JOUR AU - Kruglikov, Boris AU - Matveev, Vladimir TI - Vanishing of the entropy pseudonorm for certain integrable systems JO - Electronic research announcements of the American Mathematical Society PY - 2006 SP - 19 EP - 28 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00156-9/ DO - 10.1090/S1079-6762-06-00156-9 ID - ERAAMS_2006_12_a2 ER -
%0 Journal Article %A Kruglikov, Boris %A Matveev, Vladimir %T Vanishing of the entropy pseudonorm for certain integrable systems %J Electronic research announcements of the American Mathematical Society %D 2006 %P 19-28 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00156-9/ %R 10.1090/S1079-6762-06-00156-9 %F ERAAMS_2006_12_a2
Kruglikov, Boris; Matveev, Vladimir. Vanishing of the entropy pseudonorm for certain integrable systems. Electronic research announcements of the American Mathematical Society, Tome 12 (2006), pp. 19-28. doi : 10.1090/S1079-6762-06-00156-9. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-06-00156-9/
[1] Matematicheskie metody klassicheskoĭ mekhaniki 1989 472
[2] Inertia tensors and Stäckel systems in the Euclidean spaces Rend. Sem. Mat. Univ. Politec. Torino 1992
[3] An outline of the geometrical theory of the separation of variables in the Hamilton-Jacobi and Schrödinger equations 2002 10 17
[4] Special symmetric two-tensors, equivalent dynamical systems, cofactor and bi-cofactor systems Acta Appl. Math. 2005 33 91
[5] Integrable Hamiltonian systems 2004
,[6] Geometrical interpretation of Benenti systems J. Geom. Phys. 2003 489 506
,[7] Integrable geodesic flows with positive topological entropy Invent. Math. 2000 639 650
,[8] Entropy for group endomorphisms and homogeneous spaces Trans. Amer. Math. Soc. 1971 401 414
[9] Collective geodesic flows Ann. Inst. Fourier (Grenoble) 2003 265 308
,[10] Toda lattices and positive-entropy integrable systems Invent. Math. 2004 515 549
[11] Bi-differential calculi, bi-Hamiltonian systems and conformal Killing tensors J. Phys. A 2000 8755 8770
, ,[12] Normal forms for Hamiltonian systems with Poisson commuting integrals—elliptic case Comment. Math. Helv. 1990 4 35
[13] Entropie d’un groupe abélien de transformations Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1972/73 11 30
[14] On collective complete integrability according to the method of Thimm Ergodic Theory Dynam. Systems 1983 219 230
,[15] Topological entropy of group and semigroup actions Adv. Math. 1995 54 98
,[16] Some ergodic properties of commuting diffeomorphisms Ergodic Theory Dynam. Systems 1993 73 100
[17] Bihamiltonian structures and Stäckel separability J. Geom. Phys. 2000 210 228
, ,[18] Action-angle coordinates at singularities for analytic integrable systems Math. Z. 1991 363 407
[19] Introduction to the modern theory of dynamical systems 1995
,[20] Examples of integrable sub-Riemannian geodesic flows J. Dynam. Control Systems 2002 323 340
[21] Driven Newton equations and separable time-dependent potentials J. Math. Phys. 2002 6166 6194
,[22] Trajectory equivalence and corresponding integrals Regul. Chaotic Dyn. 1998 30 45
,[23] Hyperbolic manifolds are geodesically rigid Invent. Math. 2003 579 609
[24] Three-dimensional manifolds having metrics with the same geodesics Topology 2003 1371 1395
[25] Projectively equivalent metrics on the torus Differential Geom. Appl. 2004 251 265
[26] On the topology of manifolds with completely integrable geodesic flows Ergodic Theory Dynam. Systems 1992 109 121
[27] On the topology of manifolds with completely integrable geodesic flows. II J. Geom. Phys. 1994 289 298
[28] Geodesic flows 1999
[29] Dimension theory in dynamical systems 1997
[30] Topology of Riemannian manifolds with integrable geodesic flows Trudy Mat. Inst. Steklov. 1994 150 163
Cité par Sources :