Tan, Ser 1 ; Wong, Yan 1 ; Zhang, Ying 1, 2
@article{10_1090_S1079_6762_05_00153_8,
author = {Tan, Ser and Wong, Yan and Zhang, Ying},
title = {The {\ensuremath{\mathit{S}}\ensuremath{\mathit{L}}(2,\ensuremath{\mathbb{C}})} character variety of a one-holed torus},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {103--110},
year = {2005},
volume = {11},
doi = {10.1090/S1079-6762-05-00153-8},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00153-8/}
}
TY - JOUR AU - Tan, Ser AU - Wong, Yan AU - Zhang, Ying TI - The đđż(2,â) character variety of a one-holed torus JO - Electronic research announcements of the American Mathematical Society PY - 2005 SP - 103 EP - 110 VL - 11 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00153-8/ DO - 10.1090/S1079-6762-05-00153-8 ID - 10_1090_S1079_6762_05_00153_8 ER -
%0 Journal Article %A Tan, Ser %A Wong, Yan %A Zhang, Ying %T The đđż(2,â) character variety of a one-holed torus %J Electronic research announcements of the American Mathematical Society %D 2005 %P 103-110 %V 11 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00153-8/ %R 10.1090/S1079-6762-05-00153-8 %F 10_1090_S1079_6762_05_00153_8
Tan, Ser; Wong, Yan; Zhang, Ying. The đđż(2,â) character variety of a one-holed torus. Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 103-110. doi: 10.1090/S1079-6762-05-00153-8
[1] , , A refinement of McShaneâs identity for quasifuchsian punctured torus groups 2004 21 40
[2] A proof of McShaneâs identity via Markoff triples Bull. London Math. Soc. 1996 73 78
[3] A variation of McShaneâs identity for once-punctured torus bundles Topology 1997 325 334
[4] Markoff triples and quasi-Fuchsian groups Proc. London Math. Soc. (3) 1998 697 736
[5] Ergodic theory on moduli spaces Ann. of Math. (2) 1997 475 507
[6] The modular group action on real đđż(2)-characters of a one-holed torus Geom. Topol. 2003 443 486
[7] Geometric Galois actions. 1 1997
[8] Characters of đđż(2) representations of groups J. Differential Geom. 1999 575 626
[9] Simple geodesics and a series constant over Teichmuller space Invent. Math. 1998 607 632
Cité par Sources :