Hurewicz-like tests for Borel subsets of the plane
Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 95-102.

Voir la notice de l'article provenant de la source American Mathematical Society

Let $\xi \geq 1$ be a countable ordinal. We study the Borel subsets of the plane that can be made $\boldsymbol \Pi ^{0}_{\xi }$ by refining the Polish topology on the real line. These sets are called potentially $\boldsymbol \Pi ^{0}_{\xi }$. We give a Hurewicz-like test to recognize potentially $\boldsymbol \Pi ^{0}_{\xi }$ sets.
DOI : 10.1090/S1079-6762-05-00152-6

Lecomte, Dominique 1

1 Université Paris 6, Equipe d’Analyse Fonctionnelle, tour 46-0, boîte 186, 4, place Jussieu, 75 252 Paris Cedex 05, France, and Université de Picardie, I.U.T. de l’Oise, site de Creil, 13, allée de la faïencerie, 60 107 Creil, France
@article{ERAAMS_2005_11_a11,
     author = {Lecomte, Dominique},
     title = {Hurewicz-like tests for {Borel} subsets of the plane},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {95--102},
     publisher = {mathdoc},
     volume = {11},
     year = {2005},
     doi = {10.1090/S1079-6762-05-00152-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00152-6/}
}
TY  - JOUR
AU  - Lecomte, Dominique
TI  - Hurewicz-like tests for Borel subsets of the plane
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2005
SP  - 95
EP  - 102
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00152-6/
DO  - 10.1090/S1079-6762-05-00152-6
ID  - ERAAMS_2005_11_a11
ER  - 
%0 Journal Article
%A Lecomte, Dominique
%T Hurewicz-like tests for Borel subsets of the plane
%J Electronic research announcements of the American Mathematical Society
%D 2005
%P 95-102
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00152-6/
%R 10.1090/S1079-6762-05-00152-6
%F ERAAMS_2005_11_a11
Lecomte, Dominique. Hurewicz-like tests for Borel subsets of the plane. Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 95-102. doi : 10.1090/S1079-6762-05-00152-6. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00152-6/

[1] Harrington, L. A., Kechris, A. S., Louveau, A. A Glimm-Effros dichotomy for Borel equivalence relations J. Amer. Math. Soc. 1990 903 928

[2] Kechris, Alexander S. Classical descriptive set theory 1995

[3] Kechris, A. S., Solecki, S., Todorcevic, S. Borel chromatic numbers Adv. Math. 1999 1 44

[4] Lecomte, Dominique Classes de Wadge potentielles et théorèmes d’uniformisation partielle Fund. Math. 1993 231 258

[5] Lecomte, Dominique Complexité des boréliens à coupes dénombrables Fund. Math. 2000 139 174

[6] Louveau, Alain Ensembles analytiques et boréliens dans les espaces produits 1980 87

[7] Moschovakis, Yiannis N. Descriptive set theory 1980

[8] Louveau, A., Saint-Raymond, J. Borel classes and closed games: Wadge-type and Hurewicz-type results Trans. Amer. Math. Soc. 1987 431 467

[9] Saint-Raymond, Jean La structure borélienne d’Effros est-elle standard? Fund. Math. 1978 201 210

Cité par Sources :