Voir la notice de l'article provenant de la source American Mathematical Society
@article{ERAAMS_2005_11_a11, author = {Lecomte, Dominique}, title = {Hurewicz-like tests for {Borel} subsets of the plane}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {95--102}, publisher = {mathdoc}, volume = {11}, year = {2005}, doi = {10.1090/S1079-6762-05-00152-6}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00152-6/} }
TY - JOUR AU - Lecomte, Dominique TI - Hurewicz-like tests for Borel subsets of the plane JO - Electronic research announcements of the American Mathematical Society PY - 2005 SP - 95 EP - 102 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00152-6/ DO - 10.1090/S1079-6762-05-00152-6 ID - ERAAMS_2005_11_a11 ER -
%0 Journal Article %A Lecomte, Dominique %T Hurewicz-like tests for Borel subsets of the plane %J Electronic research announcements of the American Mathematical Society %D 2005 %P 95-102 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00152-6/ %R 10.1090/S1079-6762-05-00152-6 %F ERAAMS_2005_11_a11
Lecomte, Dominique. Hurewicz-like tests for Borel subsets of the plane. Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 95-102. doi : 10.1090/S1079-6762-05-00152-6. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00152-6/
[1] A Glimm-Effros dichotomy for Borel equivalence relations J. Amer. Math. Soc. 1990 903 928
, ,[2] Classical descriptive set theory 1995
[3] Borel chromatic numbers Adv. Math. 1999 1 44
, ,[4] Classes de Wadge potentielles et théorèmes d’uniformisation partielle Fund. Math. 1993 231 258
[5] Complexité des boréliens à coupes dénombrables Fund. Math. 2000 139 174
[6] Ensembles analytiques et boréliens dans les espaces produits 1980 87
[7] Descriptive set theory 1980
[8] Borel classes and closed games: Wadge-type and Hurewicz-type results Trans. Amer. Math. Soc. 1987 431 467
,[9] La structure borélienne d’Effros est-elle standard? Fund. Math. 1978 201 210
Cité par Sources :