Hurewicz-like tests for Borel subsets of the plane
Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 95-102
Cet article a éte moissonné depuis la source American Mathematical Society
Let $\xi \geq 1$ be a countable ordinal. We study the Borel subsets of the plane that can be made $\boldsymbol \Pi ^{0}_{\xi }$ by refining the Polish topology on the real line. These sets are called potentially $\boldsymbol \Pi ^{0}_{\xi }$. We give a Hurewicz-like test to recognize potentially $\boldsymbol \Pi ^{0}_{\xi }$ sets.
@article{10_1090_S1079_6762_05_00152_6,
author = {Lecomte, Dominique},
title = {Hurewicz-like tests for {Borel} subsets of the plane},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {95--102},
year = {2005},
volume = {11},
doi = {10.1090/S1079-6762-05-00152-6},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00152-6/}
}
TY - JOUR AU - Lecomte, Dominique TI - Hurewicz-like tests for Borel subsets of the plane JO - Electronic research announcements of the American Mathematical Society PY - 2005 SP - 95 EP - 102 VL - 11 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00152-6/ DO - 10.1090/S1079-6762-05-00152-6 ID - 10_1090_S1079_6762_05_00152_6 ER -
%0 Journal Article %A Lecomte, Dominique %T Hurewicz-like tests for Borel subsets of the plane %J Electronic research announcements of the American Mathematical Society %D 2005 %P 95-102 %V 11 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00152-6/ %R 10.1090/S1079-6762-05-00152-6 %F 10_1090_S1079_6762_05_00152_6
Lecomte, Dominique. Hurewicz-like tests for Borel subsets of the plane. Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 95-102. doi: 10.1090/S1079-6762-05-00152-6
[1] , , A Glimm-Effros dichotomy for Borel equivalence relations J. Amer. Math. Soc. 1990 903 928
[2] Classical descriptive set theory 1995
[3] , , Borel chromatic numbers Adv. Math. 1999 1 44
[4] Classes de Wadge potentielles et théorèmes d’uniformisation partielle Fund. Math. 1993 231 258
[5] Complexité des boréliens à coupes dénombrables Fund. Math. 2000 139 174
[6] Ensembles analytiques et boréliens dans les espaces produits 1980 87
[7] Descriptive set theory 1980
[8] , Borel classes and closed games: Wadge-type and Hurewicz-type results Trans. Amer. Math. Soc. 1987 431 467
[9] La structure borélienne d’Effros est-elle standard? Fund. Math. 1978 201 210
Cité par Sources :