Voir la notice de l'article provenant de la source American Mathematical Society
Ledrappier, François 1 ; Sarig, Omri 2
@article{ERAAMS_2005_11_a10, author = {Ledrappier, Fran\c{c}ois and Sarig, Omri}, title = {Invariant measures for the horocycle flow on periodic hyperbolic surfaces}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {89--94}, publisher = {mathdoc}, volume = {11}, year = {2005}, doi = {10.1090/S1079-6762-05-00151-4}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00151-4/} }
TY - JOUR AU - Ledrappier, François AU - Sarig, Omri TI - Invariant measures for the horocycle flow on periodic hyperbolic surfaces JO - Electronic research announcements of the American Mathematical Society PY - 2005 SP - 89 EP - 94 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00151-4/ DO - 10.1090/S1079-6762-05-00151-4 ID - ERAAMS_2005_11_a10 ER -
%0 Journal Article %A Ledrappier, François %A Sarig, Omri %T Invariant measures for the horocycle flow on periodic hyperbolic surfaces %J Electronic research announcements of the American Mathematical Society %D 2005 %P 89-94 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00151-4/ %R 10.1090/S1079-6762-05-00151-4 %F ERAAMS_2005_11_a10
Ledrappier, François; Sarig, Omri. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 89-94. doi : 10.1090/S1079-6762-05-00151-4. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00151-4/
[1] Tail-invariant measures for some suspension semiflows Discrete Contin. Dyn. Syst. 2002 725 735
, ,[2] On the classification of invariant measures for horosphere foliations on nilpotent covers of negatively curved manifolds 2004 319 335
[3] Geodesic paths and horocycle flow on abelian covers 1998 1 32
,[4] Existence of positive harmonic functions on groups and on covering manifolds Ann. Inst. H. Poincaré Probab. Statist. 1995 59 80
,[5] Horocycle flow on geometrically finite surfaces Duke Math. J. 1990 779 803
[6] Propriété de droite fixe et fonctions propres des opérateurs de convolution 1976
,[7] Invariant measures of horospherical flows on noncompact homogeneous spaces Invent. Math. 1978 101 138
[8] Uniform distribution of horocycle orbits for Fuchsian groups Duke Math. J. 1984 185 194
,[9] The unique ergodicity of the horocycle flow 1973 95 115
[10] Groups of polynomial growth and expanding maps Inst. Hautes Études Sci. Publ. Math. 1981 53 73
[11] Geometry of compactifications of locally symmetric spaces Ann. Inst. Fourier (Grenoble) 2002 457 559
,[12] Ergodic properties of the horocycle flow and classification of Fuchsian groups J. Dynam. Control Systems 2000 21 56
[13] Brownian motion and harmonic functions on covering manifolds. An entropic approach Dokl. Akad. Nauk SSSR 1986 1045 1049
[14] Manifolds with group actions and elliptic operators Mem. Amer. Math. Soc. 1994
,[15] Function theory, random paths and covering spaces J. Differential Geom. 1984 299 323
,[16] On Raghunathan’s measure conjecture Ann. of Math. (2) 1991 545 607
[17] Invariant Radon measures for horocycle flows on abelian covers Invent. Math. 2004 519 551
[18] The density at infinity of a discrete group of hyperbolic motions Inst. Hautes Études Sci. Publ. Math. 1979 171 202
Cité par Sources :