Voir la notice de l'article provenant de la source American Mathematical Society
Jakobson, Dmitry 1 ; Polterovich, Iosif 2
@article{ERAAMS_2005_11_a8, author = {Jakobson, Dmitry and Polterovich, Iosif}, title = {Lower bounds for the spectral function and for the remainder in local {Weyl{\textquoteright}s} law on manifolds}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {71--77}, publisher = {mathdoc}, volume = {11}, year = {2005}, doi = {10.1090/S1079-6762-05-00149-6}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00149-6/} }
TY - JOUR AU - Jakobson, Dmitry AU - Polterovich, Iosif TI - Lower bounds for the spectral function and for the remainder in local Weyl’s law on manifolds JO - Electronic research announcements of the American Mathematical Society PY - 2005 SP - 71 EP - 77 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00149-6/ DO - 10.1090/S1079-6762-05-00149-6 ID - ERAAMS_2005_11_a8 ER -
%0 Journal Article %A Jakobson, Dmitry %A Polterovich, Iosif %T Lower bounds for the spectral function and for the remainder in local Weyl’s law on manifolds %J Electronic research announcements of the American Mathematical Society %D 2005 %P 71-77 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00149-6/ %R 10.1090/S1079-6762-05-00149-6 %F ERAAMS_2005_11_a8
Jakobson, Dmitry; Polterovich, Iosif. Lower bounds for the spectral function and for the remainder in local Weyl’s law on manifolds. Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 71-77. doi : 10.1090/S1079-6762-05-00149-6. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00149-6/
[1] On the wave equation on a compact Riemannian manifold without conjugate points Math. Z. 1977 249 276
[2] Semiclassical theory of spectral rigidity Proc. Roy. Soc. London Ser. A 1985 229 251
[3] Smoothed wave functions of chaotic quantum systems Phys. D 1988 169 189
[4] Semiclassical computations of energy levels Nonlinearity 1993 523 547
,[5] Equilibrium states and the ergodic theory of Anosov diffeomorphisms 1975
[6] The ergodic theory of Axiom A flows Invent. Math. 1975 181 202
,[7] Spectre conjoint d’opérateurs pseudo-différentiels qui commutent. II. Le cas intégrable Math. Z. 1980 51 73
[8] On the wave equation asymptotics of a compact negatively curved surface Invent. Math. 1978 115 137
[9] The spectrum of positive elliptic operators and periodic bicharacteristics Invent. Math. 1975 39 79
,[10] Generalized functions. Vol. 1 1964 [1977]
,[11] The Selberg trace formula for 𝑃𝑆𝐿(2,𝑅). Vol. I 1976
[12] The spectral function of an elliptic operator Acta Math. 1968 193 218
[13] Precise spectral asymptotics for elliptic operators acting in fiberings over manifolds with boundary 1984
[14] Number variance for arithmetic hyperbolic surfaces Comm. Math. Phys. 1994 419 432
,[15] Equilibrium states and weighted uniform distribution of closed orbits 1988 617 625
[16] Zeta functions and the periodic orbit structure of hyperbolic dynamics Astérisque 1990 268
,[17] The remainder in Weyl’s law for Heisenberg manifolds J. Differential Geom. 2002 455 483
,[18] The circle problem in the hyperbolic plane J. Funct. Anal. 1994 78 116
,[19] The Riemann hypothesis for Selberg’s zeta-function and the asymptotic behavior of eigenvalues of the Laplace operator Trans. Amer. Math. Soc. 1978 209 223
[20] A Dirichlet series of eigenvalue type with applications to asymptotic estimates Bull. London Math. Soc. 1981 309 315
[21] Chebyshev’s bias Experiment. Math. 1994 173 197
,[22] The asymptotic distribution of eigenvalues of partial differential operators 1997
,[23] Gibbs measures in ergodic theory Uspehi Mat. Nauk 1972 21 64
[24] Pseudodifferential operators and spectral theory 1987
[25] Riemannian manifolds with maximal eigenfunction growth Duke Math. J. 2002 387 437
,[26] Counting lattice points in the sphere Bull. London Math. Soc. 2000 679 688
[27] Verification of the Hamilton flow conditions associated with Weyl’s conjecture Ann. Global Anal. Geom. 1990 127 136
[28] Lectures on wave invariants 1999 284 328
Cité par Sources :