Lower bounds for the spectral function and for the remainder in local Weyl’s law on manifolds
Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 71-77.

Voir la notice de l'article provenant de la source American Mathematical Society

We announce asymptotic lower bounds for the spectral function of the Laplacian and for the remainder in the local Weyl’s law on Riemannian manifolds. In the negatively curved case, methods of thermodynamic formalism are applied to improve the estimates. Our results develop and extend the unpublished thesis of A. Karnaukh. We discuss some ideas of the proofs; for complete proofs see our extended paper on the subject.
DOI : 10.1090/S1079-6762-05-00149-6

Jakobson, Dmitry 1 ; Polterovich, Iosif 2

1 Department of Mathematics and Statistics, McGill University, 805 Sherbrooke St. West, Montréal QC H3A 2K6, Canada
2 Département de mathématiques et de statistique, Université de Montréal CP 6128 Succ. Centre-Ville, Montréal QC H3C 3J7, Canada
@article{ERAAMS_2005_11_a8,
     author = {Jakobson, Dmitry and Polterovich, Iosif},
     title = {Lower bounds for the spectral function and for the remainder in local {Weyl{\textquoteright}s} law on manifolds},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {71--77},
     publisher = {mathdoc},
     volume = {11},
     year = {2005},
     doi = {10.1090/S1079-6762-05-00149-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00149-6/}
}
TY  - JOUR
AU  - Jakobson, Dmitry
AU  - Polterovich, Iosif
TI  - Lower bounds for the spectral function and for the remainder in local Weyl’s law on manifolds
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2005
SP  - 71
EP  - 77
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00149-6/
DO  - 10.1090/S1079-6762-05-00149-6
ID  - ERAAMS_2005_11_a8
ER  - 
%0 Journal Article
%A Jakobson, Dmitry
%A Polterovich, Iosif
%T Lower bounds for the spectral function and for the remainder in local Weyl’s law on manifolds
%J Electronic research announcements of the American Mathematical Society
%D 2005
%P 71-77
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00149-6/
%R 10.1090/S1079-6762-05-00149-6
%F ERAAMS_2005_11_a8
Jakobson, Dmitry; Polterovich, Iosif. Lower bounds for the spectral function and for the remainder in local Weyl’s law on manifolds. Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 71-77. doi : 10.1090/S1079-6762-05-00149-6. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00149-6/

[1] Bérard, Pierre H. On the wave equation on a compact Riemannian manifold without conjugate points Math. Z. 1977 249 276

[2] Berry, M. V. Semiclassical theory of spectral rigidity Proc. Roy. Soc. London Ser. A 1985 229 251

[3] Bogomolny, E. B. Smoothed wave functions of chaotic quantum systems Phys. D 1988 169 189

[4] Bogomolny, E., Schmit, C. Semiclassical computations of energy levels Nonlinearity 1993 523 547

[5] Bowen, Rufus Equilibrium states and the ergodic theory of Anosov diffeomorphisms 1975

[6] Bowen, Rufus, Ruelle, David The ergodic theory of Axiom A flows Invent. Math. 1975 181 202

[7] Colin De Verdière, Yves Spectre conjoint d’opérateurs pseudo-différentiels qui commutent. II. Le cas intégrable Math. Z. 1980 51 73

[8] Donnelly, H. On the wave equation asymptotics of a compact negatively curved surface Invent. Math. 1978 115 137

[9] Duistermaat, J. J., Guillemin, V. W. The spectrum of positive elliptic operators and periodic bicharacteristics Invent. Math. 1975 39 79

[10] Gel′Fand, I. M., Shilov, G. E. Generalized functions. Vol. 1 1964 [1977]

[11] Hejhal, Dennis A. The Selberg trace formula for 𝑃𝑆𝐿(2,𝑅). Vol. I 1976

[12] Hörmander, Lars The spectral function of an elliptic operator Acta Math. 1968 193 218

[13] Ivriĭ, Victor Precise spectral asymptotics for elliptic operators acting in fiberings over manifolds with boundary 1984

[14] Luo, W., Sarnak, P. Number variance for arithmetic hyperbolic surfaces Comm. Math. Phys. 1994 419 432

[15] Parry, William Equilibrium states and weighted uniform distribution of closed orbits 1988 617 625

[16] Parry, William, Pollicott, Mark Zeta functions and the periodic orbit structure of hyperbolic dynamics Astérisque 1990 268

[17] Petridis, Yiannis N., Toth, John A. The remainder in Weyl’s law for Heisenberg manifolds J. Differential Geom. 2002 455 483

[18] Phillips, Ralph, Rudnick, Zeév The circle problem in the hyperbolic plane J. Funct. Anal. 1994 78 116

[19] Randol, Burton The Riemann hypothesis for Selberg’s zeta-function and the asymptotic behavior of eigenvalues of the Laplace operator Trans. Amer. Math. Soc. 1978 209 223

[20] Randol, Burton A Dirichlet series of eigenvalue type with applications to asymptotic estimates Bull. London Math. Soc. 1981 309 315

[21] Rubinstein, Michael, Sarnak, Peter Chebyshev’s bias Experiment. Math. 1994 173 197

[22] Safarov, Yu., Vassiliev, D. The asymptotic distribution of eigenvalues of partial differential operators 1997

[23] Sinaĭ, Ja. G. Gibbs measures in ergodic theory Uspehi Mat. Nauk 1972 21 64

[24] Shubin, M. A. Pseudodifferential operators and spectral theory 1987

[25] Sogge, Christopher D., Zelditch, Steve Riemannian manifolds with maximal eigenfunction growth Duke Math. J. 2002 387 437

[26] Tsang, Kai-Man Counting lattice points in the sphere Bull. London Math. Soc. 2000 679 688

[27] Volovoy, A. V. Verification of the Hamilton flow conditions associated with Weyl’s conjecture Ann. Global Anal. Geom. 1990 127 136

[28] Zelditch, Steve Lectures on wave invariants 1999 284 328

Cité par Sources :