Recent progress on the boundary rigidity problem
Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 64-70.

Voir la notice de l'article provenant de la source American Mathematical Society

The boundary rigidity problem consists in determining a compact, Riemannian manifold with boundary, up to isometry, by knowing the boundary distance function between boundary points. In this paper we announce the result of our forthcoming article that one can solve this problem for generic simple metrics. Moreover we probe stability estimates for this problem.
DOI : 10.1090/S1079-6762-05-00148-4

Stefanov, Plamen 1 ; Uhlmann, Gunther 2

1 Department of Mathematics, Purdue University, West Lafayette, IN 47907
2 Department of Mathematics, University of Washington, Seattle, WA 98195
@article{ERAAMS_2005_11_a7,
     author = {Stefanov, Plamen and Uhlmann, Gunther},
     title = {Recent progress on the boundary rigidity problem},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {64--70},
     publisher = {mathdoc},
     volume = {11},
     year = {2005},
     doi = {10.1090/S1079-6762-05-00148-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00148-4/}
}
TY  - JOUR
AU  - Stefanov, Plamen
AU  - Uhlmann, Gunther
TI  - Recent progress on the boundary rigidity problem
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2005
SP  - 64
EP  - 70
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00148-4/
DO  - 10.1090/S1079-6762-05-00148-4
ID  - ERAAMS_2005_11_a7
ER  - 
%0 Journal Article
%A Stefanov, Plamen
%A Uhlmann, Gunther
%T Recent progress on the boundary rigidity problem
%J Electronic research announcements of the American Mathematical Society
%D 2005
%P 64-70
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00148-4/
%R 10.1090/S1079-6762-05-00148-4
%F ERAAMS_2005_11_a7
Stefanov, Plamen; Uhlmann, Gunther. Recent progress on the boundary rigidity problem. Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 64-70. doi : 10.1090/S1079-6762-05-00148-4. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00148-4/

[1] Belishev, Michael I., Kurylev, Yaroslav V. To the reconstruction of a Riemannian manifold via its spectral data (BC-method) Comm. Partial Differential Equations 1992 767 804

[2] Besson, G., Courtois, G., Gallot, S. Entropies et rigidités des espaces localement symétriques de courbure strictement négative Geom. Funct. Anal. 1995 731 799

[3] Beĭl′Kin, G. Ja. Stability and uniqueness of the solution of the inverse kinematic problem of seismology in higher dimensions Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 1979

[4] Croke, Christopher B. Rigidity for surfaces of nonpositive curvature Comment. Math. Helv. 1990 150 169

[5] Croke, Christopher B. Rigidity and the distance between boundary points J. Differential Geom. 1991 445 464

[6] Croke, Christopher B., Dairbekov, Nurlan S., Sharafutdinov, Vladimir A. Local boundary rigidity of a compact Riemannian manifold with curvature bounded above Trans. Amer. Math. Soc. 2000 3937 3956

[7] Gromov, Mikhael Filling Riemannian manifolds J. Differential Geom. 1983 1 147

[8] Lassas, Matti, Sharafutdinov, Vladimir, Uhlmann, Gunther Semiglobal boundary rigidity for Riemannian metrics Math. Ann. 2003 767 793

[9] Michel, René Sur la rigidité imposée par la longueur des géodésiques Invent. Math. 1981/82 71 83

[10] Muhometov, R. G. The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry Dokl. Akad. Nauk SSSR 1977 32 35

[11] Muhometov, R. G. On a problem of reconstructing Riemannian metrics Sibirsk. Mat. Zh. 1981

[12] Muhometov, R. G., Romanov, V. G. On the problem of finding an isotropic Riemannian metric in an 𝑛-dimensional space Dokl. Akad. Nauk SSSR 1978 41 44

[13] Otal, Jean-Pierre Sur les longueurs des géodésiques d’une métrique à courbure négative dans le disque Comment. Math. Helv. 1990 334 347

[14] Pestov, L. N., Sharafutdinov, V. A. Integral geometry of tensor fields on a manifold of negative curvature Sibirsk. Mat. Zh. 1988

[15] Sharafutdinov, V. A. Integral geometry of tensor fields 1994 271

[16] Sharafutdinov, Vladimir, Uhlmann, Gunther On deformation boundary rigidity and spectral rigidity of Riemannian surfaces with no focal points J. Differential Geom. 2000 93 110

[17] Stefanov, Plamen, Uhlmann, Gunther Rigidity for metrics with the same lengths of geodesics Math. Res. Lett. 1998 83 96

[18] Stefanov, Plamen, Uhlmann, Gunther Stability estimates for the X-ray transform of tensor fields and boundary rigidity Duke Math. J. 2004 445 467

[19] Tataru, Daniel Unique continuation for solutions to PDE’s Comm. Partial Differential Equations 1995 855 884

[20] Trèves, François Introduction to pseudodifferential and Fourier integral operators. Vol. 1 1980

[21] Wang, Jenn-Nan Stability for the reconstruction of a Riemannian metric by boundary measurements Inverse Problems 1999 1177 1192

Cité par Sources :