Everitt, Brent 1 ; Ratcliffe, John 2 ; Tschantz, Steven 2
@article{10_1090_S1079_6762_05_00145_9,
author = {Everitt, Brent and Ratcliffe, John and Tschantz, Steven},
title = {The smallest hyperbolic 6-manifolds},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {40--46},
year = {2005},
volume = {11},
doi = {10.1090/S1079-6762-05-00145-9},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00145-9/}
}
TY - JOUR AU - Everitt, Brent AU - Ratcliffe, John AU - Tschantz, Steven TI - The smallest hyperbolic 6-manifolds JO - Electronic research announcements of the American Mathematical Society PY - 2005 SP - 40 EP - 46 VL - 11 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00145-9/ DO - 10.1090/S1079-6762-05-00145-9 ID - 10_1090_S1079_6762_05_00145_9 ER -
%0 Journal Article %A Everitt, Brent %A Ratcliffe, John %A Tschantz, Steven %T The smallest hyperbolic 6-manifolds %J Electronic research announcements of the American Mathematical Society %D 2005 %P 40-46 %V 11 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00145-9/ %R 10.1090/S1079-6762-05-00145-9 %F 10_1090_S1079_6762_05_00145_9
Everitt, Brent; Ratcliffe, John; Tschantz, Steven. The smallest hyperbolic 6-manifolds. Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 40-46. doi: 10.1090/S1079-6762-05-00145-9
[1] The noncompact hyperbolic 3-manifold of minimal volume Proc. Amer. Math. Soc. 1987 601 606
[2] Automorphism groups of Lorentzian lattices J. Algebra 1987 133 153
[3] , Arithmetic subgroups of algebraic groups Ann. of Math. (2) 1962 485 535
[4] , , , The arithmetic hyperbolic 3-manifold of smallest volume Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2001 1 40
[5] The Euler characteristic of graph products and of Coxeter groups 1992 36 46
[6] Euler characteristics of groups Math. Z. 1976 1 11
[7] , Sphere packings, lattices and groups 1993
[8] , Leech roots and Vinberg groups Proc. Roy. Soc. London Ser. A 1982 233 258
[9] Discrete groups generated by reflections Ann. of Math. (2) 1934 588 621
[10] A hyperbolic 4-manifold Proc. Amer. Math. Soc. 1985 325 328
[11] Coxeter groups and hyperbolic manifolds Math. Ann. 2004 127 150
[12] , Isoenergetic surfaces of Hamiltonian systems, the enumeration of three-dimensional manifolds in order of growth of their complexity, and the calculation of the volumes of closed hyperbolic manifolds Uspekhi Mat. Nauk 1988
[13] , The orientable cusped hyperbolic 3-manifolds of minimum volume Invent. Math. 2001 451 478
[14] , Symmetric bilinear forms 1973
[15] , Discrete hyperbolic geometry Combinatorica 1983 219 237
[16] Classification of dodecahedral space forms Beiträge Algebra Geom. 1998 497 515
[17] Foundations of hyperbolic manifolds 1994
[18] , Volumes of integral congruence hyperbolic manifolds J. Reine Angew. Math. 1997 55 78
[19] , The volume spectrum of hyperbolic 4-manifolds Experiment. Math. 2000 101 125
[20] , Integral congruence two hyperbolic 5-manifolds Geom. Dedicata 2004 187 209
[21] A course in arithmetic 1973
[22] Über die analytische Theorie der quadratischen Formen. II Ann. of Math. (2) 1936 230 263
[23] Hyperbolic groups of reflections Uspekhi Mat. Nauk 1985
[24] , The groups 𝑂_{18,1}(𝑍) and 𝑂_{19,1}(𝑍) Dokl. Akad. Nauk SSSR 1978 1273 1275
[25] The groups of units of certain quadratic forms Mat. Sb. (N.S.) 1972 18 36
Cité par Sources :