The smallest hyperbolic 6-manifolds
Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 40-46.

Voir la notice de l'article provenant de la source American Mathematical Society

By gluing together copies of an all right-angled Coxeter polytope a number of open hyperbolic $6$-manifolds with Euler characteristic $-1$ are constructed. They are the first known examples of hyperbolic $6$-manifolds having the smallest possible volume.
DOI : 10.1090/S1079-6762-05-00145-9

Everitt, Brent 1 ; Ratcliffe, John 2 ; Tschantz, Steven 2

1 Department of Mathematics, University of York, York YO10 5DD, England
2 Department of Mathematics, Vanderbilt University, Nashville, TN 37240
@article{ERAAMS_2005_11_a4,
     author = {Everitt, Brent and Ratcliffe, John and Tschantz, Steven},
     title = {The smallest hyperbolic 6-manifolds},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {40--46},
     publisher = {mathdoc},
     volume = {11},
     year = {2005},
     doi = {10.1090/S1079-6762-05-00145-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00145-9/}
}
TY  - JOUR
AU  - Everitt, Brent
AU  - Ratcliffe, John
AU  - Tschantz, Steven
TI  - The smallest hyperbolic 6-manifolds
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2005
SP  - 40
EP  - 46
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00145-9/
DO  - 10.1090/S1079-6762-05-00145-9
ID  - ERAAMS_2005_11_a4
ER  - 
%0 Journal Article
%A Everitt, Brent
%A Ratcliffe, John
%A Tschantz, Steven
%T The smallest hyperbolic 6-manifolds
%J Electronic research announcements of the American Mathematical Society
%D 2005
%P 40-46
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00145-9/
%R 10.1090/S1079-6762-05-00145-9
%F ERAAMS_2005_11_a4
Everitt, Brent; Ratcliffe, John; Tschantz, Steven. The smallest hyperbolic 6-manifolds. Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 40-46. doi : 10.1090/S1079-6762-05-00145-9. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00145-9/

[1] Adams, Colin C. The noncompact hyperbolic 3-manifold of minimal volume Proc. Amer. Math. Soc. 1987 601 606

[2] Borcherds, Richard Automorphism groups of Lorentzian lattices J. Algebra 1987 133 153

[3] Borel, Armand, Harish-Chandra Arithmetic subgroups of algebraic groups Ann. of Math. (2) 1962 485 535

[4] Chinburg, Ted, Friedman, Eduardo, Jones, Kerry N., Reid, Alan W. The arithmetic hyperbolic 3-manifold of smallest volume Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2001 1 40

[5] Chiswell, I. M. The Euler characteristic of graph products and of Coxeter groups 1992 36 46

[6] Chiswell, Ian M. Euler characteristics of groups Math. Z. 1976 1 11

[7] Conway, J. H., Sloane, N. J. A. Sphere packings, lattices and groups 1993

[8] Conway, J. H., Sloane, N. J. A. Leech roots and Vinberg groups Proc. Roy. Soc. London Ser. A 1982 233 258

[9] Coxeter, H. S. M. Discrete groups generated by reflections Ann. of Math. (2) 1934 588 621

[10] Davis, Michael W. A hyperbolic 4-manifold Proc. Amer. Math. Soc. 1985 325 328

[11] Everitt, Brent Coxeter groups and hyperbolic manifolds Math. Ann. 2004 127 150

[12] Matveev, S. V., Fomenko, A. T. Isoenergetic surfaces of Hamiltonian systems, the enumeration of three-dimensional manifolds in order of growth of their complexity, and the calculation of the volumes of closed hyperbolic manifolds Uspekhi Mat. Nauk 1988

[13] Cao, Chun, Meyerhoff, G. Robert The orientable cusped hyperbolic 3-manifolds of minimum volume Invent. Math. 2001 451 478

[14] Milnor, John, Husemoller, Dale Symmetric bilinear forms 1973

[15] Neumaier, A., Seidel, J. J. Discrete hyperbolic geometry Combinatorica 1983 219 237

[16] Prok, István Classification of dodecahedral space forms Beiträge Algebra Geom. 1998 497 515

[17] Ratcliffe, John G. Foundations of hyperbolic manifolds 1994

[18] Ratcliffe, John G., Tschantz, Steven T. Volumes of integral congruence hyperbolic manifolds J. Reine Angew. Math. 1997 55 78

[19] Ratcliffe, John G., Tschantz, Steven T. The volume spectrum of hyperbolic 4-manifolds Experiment. Math. 2000 101 125

[20] Ratcliffe, John G., Tschantz, Steven T. Integral congruence two hyperbolic 5-manifolds Geom. Dedicata 2004 187 209

[21] Serre, J.-P. A course in arithmetic 1973

[22] Siegel, Carl Ludwig Über die analytische Theorie der quadratischen Formen. II Ann. of Math. (2) 1936 230 263

[23] Vinberg, È. B. Hyperbolic groups of reflections Uspekhi Mat. Nauk 1985

[24] Vinberg, È. B., Kaplinskaja, I. M. The groups 𝑂_{18,1}(𝑍) and 𝑂_{19,1}(𝑍) Dokl. Akad. Nauk SSSR 1978 1273 1275

[25] Vinberg, È. B. The groups of units of certain quadratic forms Mat. Sb. (N.S.) 1972 18 36

Cité par Sources :