Wavelet constructions in non-linear dynamics
Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 21-33.

Voir la notice de l'article provenant de la source American Mathematical Society

We construct certain Hilbert spaces associated with a class of non-linear dynamical systems $X$. These are systems which arise from a generalized self-similarity and an iterated substitution. We show that when a weight function $W$ on $X$ is given, then we may construct associated Hilbert spaces $H(W)$ of $L^2$-martingales which have wavelet bases.
DOI : 10.1090/S1079-6762-05-00143-5

Dutkay, Dorin 1 ; Jorgensen, Palle 1

1 Department of Mathematics, The University of Iowa, 14 MacLean Hall, Iowa City, IA 52242-1419
@article{ERAAMS_2005_11_a2,
     author = {Dutkay, Dorin and Jorgensen, Palle},
     title = {Wavelet constructions in non-linear dynamics},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {21--33},
     publisher = {mathdoc},
     volume = {11},
     year = {2005},
     doi = {10.1090/S1079-6762-05-00143-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00143-5/}
}
TY  - JOUR
AU  - Dutkay, Dorin
AU  - Jorgensen, Palle
TI  - Wavelet constructions in non-linear dynamics
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2005
SP  - 21
EP  - 33
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00143-5/
DO  - 10.1090/S1079-6762-05-00143-5
ID  - ERAAMS_2005_11_a2
ER  - 
%0 Journal Article
%A Dutkay, Dorin
%A Jorgensen, Palle
%T Wavelet constructions in non-linear dynamics
%J Electronic research announcements of the American Mathematical Society
%D 2005
%P 21-33
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00143-5/
%R 10.1090/S1079-6762-05-00143-5
%F ERAAMS_2005_11_a2
Dutkay, Dorin; Jorgensen, Palle. Wavelet constructions in non-linear dynamics. Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 21-33. doi : 10.1090/S1079-6762-05-00143-5. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00143-5/

[1] Baggett, Lawrence W., Merrill, Kathy D. Abstract harmonic analysis and wavelets in 𝐑ⁿ 1999 17 27

[2] Baladi, Viviane Positive transfer operators and decay of correlations 2000

[3] Bramson, Maury, Kalikow, Steven Nonuniqueness in 𝑔-functions Israel J. Math. 1993 153 160

[4] Brolin, Hans Invariant sets under iteration of rational functions Ark. Mat. 1965

[5] Doob, J. L. The Brownian movement and stochastic equations Ann. of Math. (2) 1942 351 369

[6] Doob, J. L. What is a martingale? Amer. Math. Monthly 1971 451 463

[7] Doob, J. L. Classical potential theory and its probabilistic counterpart 1984

[8] Gundy, Richard F. Low-pass filters, martingales, and multiresolution analyses Appl. Comput. Harmon. Anal. 2000 204 219

[9] Gundy, Richard F. Martingale theory and pointwise convergence of certain orthogonal series Trans. Amer. Math. Soc. 1966 228 248

[10] Gundy, Richard F. Two remarks concerning wavelets: Cohen’s criterion for low-pass filters and Meyer’s theorem on linear independence 1999 249 258

[11] Nelson, Edward Topics in dynamics. I: Flows 1969

[12] Neveu, J. Discrete-parameter martingales 1975

[13] Ruelle, David The thermodynamic formalism for expanding maps Comm. Math. Phys. 1989 239 262

Cité par Sources :