A combinatorial curvature flow for compact 3-manifolds with boundary
Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 12-20.

Voir la notice de l'article provenant de la source American Mathematical Society

We introduce a combinatorial curvature flow for piecewise constant curvature metrics on compact triangulated 3-manifolds with boundary consisting of surfaces of negative Euler characteristic. The flow tends to find the complete hyperbolic metric with totally geodesic boundary on a manifold. Some of the basic properties of the combinatorial flow are established. The most important one is that the evolution of the combinatorial curvature satisfies a combinatorial heat equation. It implies that the total curvature decreases along the flow. The local convergence of the flow to the hyperbolic metric is also established if the triangulation is isotopic to a totally geodesic triangulation.
DOI : 10.1090/S1079-6762-05-00142-3

Luo, Feng 1

1 Department of Mathematics, Rutgers University, Piscataway, NJ 07059
@article{ERAAMS_2005_11_a1,
     author = {Luo, Feng},
     title = {A combinatorial curvature flow for compact 3-manifolds with boundary},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {12--20},
     publisher = {mathdoc},
     volume = {11},
     year = {2005},
     doi = {10.1090/S1079-6762-05-00142-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00142-3/}
}
TY  - JOUR
AU  - Luo, Feng
TI  - A combinatorial curvature flow for compact 3-manifolds with boundary
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2005
SP  - 12
EP  - 20
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00142-3/
DO  - 10.1090/S1079-6762-05-00142-3
ID  - ERAAMS_2005_11_a1
ER  - 
%0 Journal Article
%A Luo, Feng
%T A combinatorial curvature flow for compact 3-manifolds with boundary
%J Electronic research announcements of the American Mathematical Society
%D 2005
%P 12-20
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00142-3/
%R 10.1090/S1079-6762-05-00142-3
%F ERAAMS_2005_11_a1
Luo, Feng. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic research announcements of the American Mathematical Society, Tome 11 (2005), pp. 12-20. doi : 10.1090/S1079-6762-05-00142-3. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-05-00142-3/

[1] Bao, Xiliang, Bonahon, Francis Hyperideal polyhedra in hyperbolic 3-space Bull. Soc. Math. France 2002 457 491

[2] Chow, Bennett, Luo, Feng Combinatorial Ricci flows on surfaces J. Differential Geom. 2003 97 129

[3] Colin De Verdière, Yves Un principe variationnel pour les empilements de cercles Invent. Math. 1991 655 669

[4] Frigerio, Roberto, Petronio, Carlo Construction and recognition of hyperbolic 3-manifolds with geodesic boundary Trans. Amer. Math. Soc. 2004 3243 3282

[5] Hamilton, Richard S. Three-manifolds with positive Ricci curvature J. Differential Geometry 1982 255 306

[6] Hodgson, Craig D., Kerckhoff, Steven P. Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery J. Differential Geom. 1998 1 59

[7] Lackenby, Marc Word hyperbolic Dehn surgery Invent. Math. 2000 243 282

[8] Lackenby, Marc Taut ideal triangulations of 3-manifolds Geom. Topol. 2000 369 395

[9] Leibon, Gregory Characterizing the Delaunay decompositions of compact hyperbolic surfaces Geom. Topol. 2002 361 391

[10] Moise, Edwin E. Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung Ann. of Math. (2) 1952 96 114

[11] Rivin, Igor Combinatorial optimization in geometry Adv. in Appl. Math. 2003 242 271

[12] Rivin, Igor Euclidean structures on simplicial surfaces and hyperbolic volume Ann. of Math. (2) 1994 553 580

Cité par Sources :