Local rigidity of actions of higher rank abelian groups and KAM method
Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 142-154.

Voir la notice de l'article provenant de la source American Mathematical Society

We develop a new method for proving local differentiable rigidity for actions of higher rank abelian groups. Unlike earlier methods it does not require previous knowledge of structural stability and instead uses a version of the KAM (Kolmogorov-Arnold-Moser) iterative scheme. As an application we show $\mathcal {C}^\infty$ local rigidity for $\mathbb {Z}^k\ (k\ge 2)$ partially hyperbolic actions by toral automorphisms. We also prove the existence of irreducible genuinely partially hyperbolic higher rank actions by automorphisms on any torus $\mathbb {T}^N$ for any even $N\ge 6$.
DOI : 10.1090/S1079-6762-04-00139-8

Damjanović, Danijela 1, 2 ; Katok, Anatole 1

1 Department of Mathematics, The Pennsylvania State University, University Park, PA 16802
2 Erwin Schroedinger Institute, Boltzmanngasse 9, A-1090 Vienna, Austria
@article{ERAAMS_2004_10_a15,
     author = {Damjanovi\'c, Danijela and Katok, Anatole},
     title = {Local rigidity of actions of higher rank abelian groups and {KAM} method},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {142--154},
     publisher = {mathdoc},
     volume = {10},
     year = {2004},
     doi = {10.1090/S1079-6762-04-00139-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00139-8/}
}
TY  - JOUR
AU  - Damjanović, Danijela
AU  - Katok, Anatole
TI  - Local rigidity of actions of higher rank abelian groups and KAM method
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2004
SP  - 142
EP  - 154
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00139-8/
DO  - 10.1090/S1079-6762-04-00139-8
ID  - ERAAMS_2004_10_a15
ER  - 
%0 Journal Article
%A Damjanović, Danijela
%A Katok, Anatole
%T Local rigidity of actions of higher rank abelian groups and KAM method
%J Electronic research announcements of the American Mathematical Society
%D 2004
%P 142-154
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00139-8/
%R 10.1090/S1079-6762-04-00139-8
%F ERAAMS_2004_10_a15
Damjanović, Danijela; Katok, Anatole. Local rigidity of actions of higher rank abelian groups and KAM method. Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 142-154. doi : 10.1090/S1079-6762-04-00139-8. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00139-8/

[1] Guysinsky, M., Katok, A. Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations Math. Res. Lett. 1998 149 163

[2] Hirsch, M. W., Pugh, C. C., Shub, M. Invariant manifolds 1977

[3] Hurder, Steven Affine Anosov actions Michigan Math. J. 1993 561 575

[4] Katok, Anatole, Hasselblatt, Boris Introduction to the modern theory of dynamical systems 1995

[5] Katok, Anatole, Katok, Svetlana Higher cohomology for abelian groups of toral automorphisms Ergodic Theory Dynam. Systems 1995 569 592

[6] Katok, Anatole, Katok, Svetlana, Schmidt, Klaus Rigidity of measurable structure for ℤ^{𝕕}-actions by automorphisms of a torus Comment. Math. Helv. 2002 718 745

[7] Katok, A., Lewis, J. Local rigidity for certain groups of toral automorphisms Israel J. Math. 1991 203 241

[8] Katok, A., Lewis, J. Global rigidity results for lattice actions on tori and new examples of volume-preserving actions Israel J. Math. 1996 253 280

[9] Katok, Anatole, Spatzier, Ralf J. First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity Inst. Hautes Études Sci. Publ. Math. 1994 131 156

[10] Katok, A., Spatzier, R. J. Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions Math. Res. Lett. 1994 193 202

[11] Katok, A., Spatzier, R. J. Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions Tr. Mat. Inst. Steklova 1997 292 319

[12] Katznelson, Yitzhak Ergodic automorphisms of 𝑇ⁿ are Bernoulli shifts Israel J. Math. 1971 186 195

[13] Lazutkin, Vladimir F. KAM theory and semiclassical approximations to eigenfunctions 1993

[14] De La Llave, Rafael A tutorial on KAM theory 2001 175 292

[15] Mañé, Ricardo A proof of the 𝐶¹ stability conjecture Inst. Hautes Études Sci. Publ. Math. 1988 161 210

[16] Margulis, Gregory A., Qian, Nantian Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices Ergodic Theory Dynam. Systems 2001 121 164

[17] Moser, Jürgen On commuting circle mappings and simultaneous Diophantine approximations Math. Z. 1990 105 121

[18] Robbin, J. W. A structural stability theorem Ann. of Math. (2) 1971 447 493

[19] Starkov, A. N. The first cohomology group, mixing, and minimal sets of the commutative group of algebraic actions on a torus J. Math. Sci. (New York) 1999 2576 2582

[20] Veech, William A. Periodic points and invariant pseudomeasures for toral endomorphisms Ergodic Theory Dynam. Systems 1986 449 473

Cité par Sources :