Voir la notice de l'article provenant de la source American Mathematical Society
Damjanović, Danijela 1, 2 ; Katok, Anatole 1
@article{ERAAMS_2004_10_a15, author = {Damjanovi\'c, Danijela and Katok, Anatole}, title = {Local rigidity of actions of higher rank abelian groups and {KAM} method}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {142--154}, publisher = {mathdoc}, volume = {10}, year = {2004}, doi = {10.1090/S1079-6762-04-00139-8}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00139-8/} }
TY - JOUR AU - Damjanović, Danijela AU - Katok, Anatole TI - Local rigidity of actions of higher rank abelian groups and KAM method JO - Electronic research announcements of the American Mathematical Society PY - 2004 SP - 142 EP - 154 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00139-8/ DO - 10.1090/S1079-6762-04-00139-8 ID - ERAAMS_2004_10_a15 ER -
%0 Journal Article %A Damjanović, Danijela %A Katok, Anatole %T Local rigidity of actions of higher rank abelian groups and KAM method %J Electronic research announcements of the American Mathematical Society %D 2004 %P 142-154 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00139-8/ %R 10.1090/S1079-6762-04-00139-8 %F ERAAMS_2004_10_a15
Damjanović, Danijela; Katok, Anatole. Local rigidity of actions of higher rank abelian groups and KAM method. Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 142-154. doi : 10.1090/S1079-6762-04-00139-8. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00139-8/
[1] Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations Math. Res. Lett. 1998 149 163
,[2] Invariant manifolds 1977
, ,[3] Affine Anosov actions Michigan Math. J. 1993 561 575
[4] Introduction to the modern theory of dynamical systems 1995
,[5] Higher cohomology for abelian groups of toral automorphisms Ergodic Theory Dynam. Systems 1995 569 592
,[6] Rigidity of measurable structure for ℤ^{𝕕}-actions by automorphisms of a torus Comment. Math. Helv. 2002 718 745
, ,[7] Local rigidity for certain groups of toral automorphisms Israel J. Math. 1991 203 241
,[8] Global rigidity results for lattice actions on tori and new examples of volume-preserving actions Israel J. Math. 1996 253 280
,[9] First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity Inst. Hautes Études Sci. Publ. Math. 1994 131 156
,[10] Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions Math. Res. Lett. 1994 193 202
,[11] Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions Tr. Mat. Inst. Steklova 1997 292 319
,[12] Ergodic automorphisms of 𝑇ⁿ are Bernoulli shifts Israel J. Math. 1971 186 195
[13] KAM theory and semiclassical approximations to eigenfunctions 1993
[14] A tutorial on KAM theory 2001 175 292
[15] A proof of the 𝐶¹ stability conjecture Inst. Hautes Études Sci. Publ. Math. 1988 161 210
[16] Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices Ergodic Theory Dynam. Systems 2001 121 164
,[17] On commuting circle mappings and simultaneous Diophantine approximations Math. Z. 1990 105 121
[18] A structural stability theorem Ann. of Math. (2) 1971 447 493
[19] The first cohomology group, mixing, and minimal sets of the commutative group of algebraic actions on a torus J. Math. Sci. (New York) 1999 2576 2582
[20] Periodic points and invariant pseudomeasures for toral endomorphisms Ergodic Theory Dynam. Systems 1986 449 473
Cité par Sources :