Projected products of polygons
Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 122-134.

Voir la notice de l'article provenant de la source American Mathematical Society

It is an open problem to characterize the cone of $f$-vectors of $4$-dimensional convex polytopes. The question whether the “fatness” of the $f$-vector of a $4$-polytope can be arbitrarily large is a key problem in this context. Here we construct a $2$-parameter family of $4$-dimensional polytopes $\pi (P^{2r}_n)$ with extreme combinatorial structure. In this family, the “fatness” of the $f$-vector gets arbitrarily close to $9$; an analogous invariant of the flag vector, the “complexity,” gets arbitrarily close to $16$. The polytopes are obtained from suitable deformed products of even polygons by a projection to $\mathbb {R}^4$.
DOI : 10.1090/S1079-6762-04-00137-4

Ziegler, Günter 1

1 Inst. Mathematics, MA 6-2, TU Berlin, D-10623 Berlin, Germany
@article{ERAAMS_2004_10_a13,
     author = {Ziegler, G\"unter},
     title = {Projected products of polygons},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {122--134},
     publisher = {mathdoc},
     volume = {10},
     year = {2004},
     doi = {10.1090/S1079-6762-04-00137-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00137-4/}
}
TY  - JOUR
AU  - Ziegler, Günter
TI  - Projected products of polygons
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2004
SP  - 122
EP  - 134
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00137-4/
DO  - 10.1090/S1079-6762-04-00137-4
ID  - ERAAMS_2004_10_a13
ER  - 
%0 Journal Article
%A Ziegler, Günter
%T Projected products of polygons
%J Electronic research announcements of the American Mathematical Society
%D 2004
%P 122-134
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00137-4/
%R 10.1090/S1079-6762-04-00137-4
%F ERAAMS_2004_10_a13
Ziegler, Günter. Projected products of polygons. Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 122-134. doi : 10.1090/S1079-6762-04-00137-4. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00137-4/

[1] Amenta, Nina, Ziegler, Günter M. Deformed products and maximal shadows of polytopes 1999 57 90

[2] Barnette, David W. Projections of 3-polytopes Israel J. Math. 1970 304 308

[3] Bayer, Margaret The extended 𝑓-vectors of 4-polytopes J. Combin. Theory Ser. A 1987 141 151

[4] Bayer, Margaret M., Billera, Louis J. Counting faces and chains in polytopes and posets 1984 207 252

[5] Eppstein, David, Kuperberg, Greg, Ziegler, Günter M. Fat 4-polytopes and fatter 3-spheres 2003 239 265

[6] Gévay, G. Kepler hypersolids 1994 119 129

[7] Grünbaum, Branko Convex polytopes 2003

[8] Höppner, Andrea, Ziegler, Günter M. A census of flag-vectors of 4-polytopes 2000 105 110

[9] Joswig, M., Ziegler, G. M. Neighborly cubical polytopes Discrete Comput. Geom. 2000 325 344

[10] Kalai, Gil Rigidity and the lower bound theorem. I Invent. Math. 1987 125 151

[11] Schläfli, Ludwig Gesammelte mathematische Abhandlungen. Band I 1950 392

[12] Stanley, Richard Generalized 𝐻-vectors, intersection cohomology of toric varieties, and related results 1987 187 213

[13] Ziegler, Günter M. Lectures on polytopes 1995

[14] Proceedings of the International Congress of Mathematicians. Vol. II 2002

Cité par Sources :