An upper bound for positive solutions of the equation Δ𝑢=𝑢^{𝛼}
Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 103-112.

Voir la notice de l'article provenant de la source American Mathematical Society

In 2002 Mselati proved that every positive solution of the equation $\Delta u=u^2$ in a bounded domain of class $C^4$ is the limit of an increasing sequence of moderate solutions. (A solution is called moderate if it is dominated by a harmonic function.) As a part of his proof, he established an upper bound (in terms of the capacity of $K$) for solutions vanishing off a compact subset $K$ of $\partial E$. We use a different kind of capacity (we call it the Poisson capacity) and we establish in terms of this capacity an upper bound for solutions of $\Delta u=u^\alpha$ with $1\alpha \le 2$. This is a part of the program: to classify all positive solutions of this equation.
DOI : 10.1090/S1079-6762-04-00135-0

Kuznetsov, S. 1

1 Department of Mathematics, University of Colorado, Boulder, CO 80309-0395
@article{ERAAMS_2004_10_a11,
     author = {Kuznetsov, S.},
     title = {An upper bound for positive solutions of the equation {\ensuremath{\Delta}\ensuremath{\mathit{u}}=\ensuremath{\mathit{u}}^{𝛼}}},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {103--112},
     publisher = {mathdoc},
     volume = {10},
     year = {2004},
     doi = {10.1090/S1079-6762-04-00135-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00135-0/}
}
TY  - JOUR
AU  - Kuznetsov, S.
TI  - An upper bound for positive solutions of the equation Δ𝑢=𝑢^{𝛼}
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2004
SP  - 103
EP  - 112
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00135-0/
DO  - 10.1090/S1079-6762-04-00135-0
ID  - ERAAMS_2004_10_a11
ER  - 
%0 Journal Article
%A Kuznetsov, S.
%T An upper bound for positive solutions of the equation Δ𝑢=𝑢^{𝛼}
%J Electronic research announcements of the American Mathematical Society
%D 2004
%P 103-112
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00135-0/
%R 10.1090/S1079-6762-04-00135-0
%F ERAAMS_2004_10_a11
Kuznetsov, S. An upper bound for positive solutions of the equation Δ𝑢=𝑢^{𝛼}. Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 103-112. doi : 10.1090/S1079-6762-04-00135-0. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00135-0/

[1] Dynkin, E. B. Diffusions, superdiffusions and partial differential equations 2002

[2] Kuznetsov, S. E. Polar boundary sets for superdiffusions and removable lateral singularities for nonlinear parabolic PDEs Comm. Pure Appl. Math. 1998 303 340

Cité par Sources :