Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S1079_6762_04_00134_9, author = {Bennett, Jonathan}, title = {A trilinear restriction problem for the paraboloid in {\^a\^A{\textthreesuperior}}}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {97--102}, publisher = {mathdoc}, volume = {10}, year = {2004}, doi = {10.1090/S1079-6762-04-00134-9}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00134-9/} }
TY - JOUR AU - Bennett, Jonathan TI - A trilinear restriction problem for the paraboloid in â³ JO - Electronic research announcements of the American Mathematical Society PY - 2004 SP - 97 EP - 102 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00134-9/ DO - 10.1090/S1079-6762-04-00134-9 ID - 10_1090_S1079_6762_04_00134_9 ER -
%0 Journal Article %A Bennett, Jonathan %T A trilinear restriction problem for the paraboloid in â³ %J Electronic research announcements of the American Mathematical Society %D 2004 %P 97-102 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00134-9/ %R 10.1090/S1079-6762-04-00134-9 %F 10_1090_S1079_6762_04_00134_9
Bennett, Jonathan. A trilinear restriction problem for the paraboloid in â³. Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 97-102. doi: 10.1090/S1079-6762-04-00134-9
[1] A multilinear extension inequality in ââ¿ Bull. London Math. Soc. 2004 407 412
, ,[2] Restriction theorems and maximal operators related to oscillatory integrals in ð³ Duke Math. J. 1999 547 574
, ,[3] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993
[4] A bilinear approach to the restriction and Kakeya conjectures J. Amer. Math. Soc. 1998 967 1000
, ,Cité par Sources :