Dimension product structure of hyperbolic sets
Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 88-96.

Voir la notice de l'article provenant de la source American Mathematical Society

We conjecture that the fractal dimension of hyperbolic sets can be computed by adding those of their stable and unstable slices. This would facilitate substantial progress in the calculation or estimation of these dimensions, which are related in deep ways to dynamical properties. We prove the conjecture in a model case of Smale solenoids.
DOI : 10.1090/S1079-6762-04-00133-7

Hasselblatt, Boris 1 ; Schmeling, Jörg 2

1 Department of Mathematics, Tufts University, Medford, MA 02155
2 Lund Institute of Technology, Lunds Universitet, Box 118, SE-22100 Lund, Sweden
@article{ERAAMS_2004_10_a9,
     author = {Hasselblatt, Boris and Schmeling, J\"org},
     title = {Dimension product structure of hyperbolic sets},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {88--96},
     publisher = {mathdoc},
     volume = {10},
     year = {2004},
     doi = {10.1090/S1079-6762-04-00133-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00133-7/}
}
TY  - JOUR
AU  - Hasselblatt, Boris
AU  - Schmeling, Jörg
TI  - Dimension product structure of hyperbolic sets
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2004
SP  - 88
EP  - 96
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00133-7/
DO  - 10.1090/S1079-6762-04-00133-7
ID  - ERAAMS_2004_10_a9
ER  - 
%0 Journal Article
%A Hasselblatt, Boris
%A Schmeling, Jörg
%T Dimension product structure of hyperbolic sets
%J Electronic research announcements of the American Mathematical Society
%D 2004
%P 88-96
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00133-7/
%R 10.1090/S1079-6762-04-00133-7
%F ERAAMS_2004_10_a9
Hasselblatt, Boris; Schmeling, Jörg. Dimension product structure of hyperbolic sets. Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 88-96. doi : 10.1090/S1079-6762-04-00133-7. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00133-7/

[1] Anosov, D. V. Geodesic flows on closed Riemannian manifolds of negative curvature Trudy Mat. Inst. Steklov. 1967 209

[2] Anosov, D. V., Sinaĭ, Ja. G. Certain smooth ergodic systems Uspehi Mat. Nauk 1967 107 172

[3] Barreira, Luis, Schmeling, Jörg Sets of “non-typical” points have full topological entropy and full Hausdorff dimension Israel J. Math. 2000 29 70

[4] Barreira, Luis, Pesin, Yakov, Schmeling, Jörg On the pointwise dimension of hyperbolic measures: a proof of the Eckmann-Ruelle conjecture Electron. Res. Announc. Amer. Math. Soc. 1996 69 72

[5] Bothe, H. G. The Hausdorff dimension of certain solenoids Ergodic Theory Dynam. Systems 1995 449 474

[6] Bowen, Rufus Topological entropy for noncompact sets Trans. Amer. Math. Soc. 1973 125 136

[7] Brin, Michael, Stuck, Garrett Introduction to dynamical systems 2002

[8] Falconer, K. J. The geometry of fractal sets 1986

[9] Hasselblatt, Boris Regularity of the Anosov splitting and of horospheric foliations Ergodic Theory Dynam. Systems 1994 645 666

[10] Handbook of dynamical systems. Vol. 1A 2002

[11] Hasselblatt, Boris, Wilkinson, Amie Prevalence of non-Lipschitz Anosov foliations Ergodic Theory Dynam. Systems 1999 643 656

[12] Katok, Anatole, Hasselblatt, Boris Introduction to the modern theory of dynamical systems 1995

[13] Ledrappier, F., Young, L.-S. The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula Ann. of Math. (2) 1985 509 539

[14] Pesin, Yakov B. Dimension theory in dynamical systems 1997

[15] Pugh, Charles, Shub, Michael, Wilkinson, Amie Hölder foliations Duke Math. J. 1997 517 546

[16] Schmeling, J. Hölder continuity of the holonomy maps for hyperbolic basic sets. II Math. Nachr. 1994 211 225

[17] Schmeling, J., Siegmund-Schultze, Ra. Hölder continuity of the holonomy maps for hyperbolic basic sets. I 1992 174 191

[18] Smale, S. Differentiable dynamical systems Bull. Amer. Math. Soc. 1967 747 817

[19] Young, Lai-Sang What are SRB measures, and which dynamical systems have them? J. Statist. Phys. 2002 733 754

Cité par Sources :