Voir la notice de l'article provenant de la source American Mathematical Society
Hasselblatt, Boris 1 ; Schmeling, Jörg 2
@article{ERAAMS_2004_10_a9, author = {Hasselblatt, Boris and Schmeling, J\"org}, title = {Dimension product structure of hyperbolic sets}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {88--96}, publisher = {mathdoc}, volume = {10}, year = {2004}, doi = {10.1090/S1079-6762-04-00133-7}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00133-7/} }
TY - JOUR AU - Hasselblatt, Boris AU - Schmeling, Jörg TI - Dimension product structure of hyperbolic sets JO - Electronic research announcements of the American Mathematical Society PY - 2004 SP - 88 EP - 96 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00133-7/ DO - 10.1090/S1079-6762-04-00133-7 ID - ERAAMS_2004_10_a9 ER -
%0 Journal Article %A Hasselblatt, Boris %A Schmeling, Jörg %T Dimension product structure of hyperbolic sets %J Electronic research announcements of the American Mathematical Society %D 2004 %P 88-96 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00133-7/ %R 10.1090/S1079-6762-04-00133-7 %F ERAAMS_2004_10_a9
Hasselblatt, Boris; Schmeling, Jörg. Dimension product structure of hyperbolic sets. Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 88-96. doi : 10.1090/S1079-6762-04-00133-7. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00133-7/
[1] Geodesic flows on closed Riemannian manifolds of negative curvature Trudy Mat. Inst. Steklov. 1967 209
[2] Certain smooth ergodic systems Uspehi Mat. Nauk 1967 107 172
,[3] Sets of “non-typical” points have full topological entropy and full Hausdorff dimension Israel J. Math. 2000 29 70
,[4] On the pointwise dimension of hyperbolic measures: a proof of the Eckmann-Ruelle conjecture Electron. Res. Announc. Amer. Math. Soc. 1996 69 72
, ,[5] The Hausdorff dimension of certain solenoids Ergodic Theory Dynam. Systems 1995 449 474
[6] Topological entropy for noncompact sets Trans. Amer. Math. Soc. 1973 125 136
[7] Introduction to dynamical systems 2002
,[8] The geometry of fractal sets 1986
[9] Regularity of the Anosov splitting and of horospheric foliations Ergodic Theory Dynam. Systems 1994 645 666
[10] Handbook of dynamical systems. Vol. 1A 2002
[11] Prevalence of non-Lipschitz Anosov foliations Ergodic Theory Dynam. Systems 1999 643 656
,[12] Introduction to the modern theory of dynamical systems 1995
,[13] The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula Ann. of Math. (2) 1985 509 539
,[14] Dimension theory in dynamical systems 1997
[15] Hölder foliations Duke Math. J. 1997 517 546
, ,[16] Hölder continuity of the holonomy maps for hyperbolic basic sets. II Math. Nachr. 1994 211 225
[17] Hölder continuity of the holonomy maps for hyperbolic basic sets. I 1992 174 191
,[18] Differentiable dynamical systems Bull. Amer. Math. Soc. 1967 747 817
[19] What are SRB measures, and which dynamical systems have them? J. Statist. Phys. 2002 733 754
Cité par Sources :