Voir la notice de l'article provenant de la source American Mathematical Society
Cohn, Henry 1 ; Kumar, Abhinav 2
@article{ERAAMS_2004_10_a6, author = {Cohn, Henry and Kumar, Abhinav}, title = {The densest lattice in twenty-four dimensions}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {58--67}, publisher = {mathdoc}, volume = {10}, year = {2004}, doi = {10.1090/S1079-6762-04-00130-1}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00130-1/} }
TY - JOUR AU - Cohn, Henry AU - Kumar, Abhinav TI - The densest lattice in twenty-four dimensions JO - Electronic research announcements of the American Mathematical Society PY - 2004 SP - 58 EP - 67 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00130-1/ DO - 10.1090/S1079-6762-04-00130-1 ID - ERAAMS_2004_10_a6 ER -
%0 Journal Article %A Cohn, Henry %A Kumar, Abhinav %T The densest lattice in twenty-four dimensions %J Electronic research announcements of the American Mathematical Society %D 2004 %P 58-67 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00130-1/ %R 10.1090/S1079-6762-04-00130-1 %F ERAAMS_2004_10_a6
Cohn, Henry; Kumar, Abhinav. The densest lattice in twenty-four dimensions. Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 58-67. doi : 10.1090/S1079-6762-04-00130-1. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00130-1/
[1] The complete enumeration of extreme senary forms Philos. Trans. Roy. Soc. London Ser. A 1957 461 506
[2] New upper bounds on sphere packings. II Geom. Topol. 2002 329 353
[3] New upper bounds on sphere packings. I Ann. of Math. (2) 2003 689 714
,[4] Sphere packings, lattices and groups 1999
,[5] Spherical codes and designs Geometriae Dedicata 1977 363 388
, ,[6] Lattices, linear codes, and invariants. I Notices Amer. Math. Soc. 2000 1238 1245
[7] Geometry of numbers 1987
,[8] Boundaries for packings in 𝑛-dimensional Euclidean space Dokl. Akad. Nauk SSSR 1979 1299 1303
[9] Perfect lattices in Euclidean spaces 2003
[10] New bounds on the number of unit spheres that can touch a unit sphere in 𝑛 dimensions J. Combin. Theory Ser. A 1979 210 214
,[11] Uniqueness of classes of positive quadratic forms, on which values of Hermite constants are reached for 6≤𝑛≤8 Trudy Mat. Inst. Steklov. 1980
Cité par Sources :