On approximation of locally compact groups by finite algebraic systems
Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 21-28.

Voir la notice de l'article provenant de la source American Mathematical Society

We discuss the approximability of locally compact groups by finite semigroups and finite quasigroups (latin squares). We show that if a locally compact group $G$ is approximable by finite semigroups, then it is approximable by finite groups, and thus many important groups are not approximable by finite semigroups. This result implies, in particular, the impossibility to simulate the field of reals in computers by finite associative rings. We show that a locally compact group is approximable by finite quasigroups iff it is unimodular.
DOI : 10.1090/S1079-6762-04-00126-X

Glebsky, L. 1 ; Gordon, E. 2

1 IICO-UASLP, Av. Karakorum 1470, Lomas 4ta Session, SanLuis Potosi SLP 78210, Mexico
2 Department of Mathematics and Computer Science, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL 61920-3099
@article{ERAAMS_2004_10_a2,
     author = {Glebsky, L. and Gordon, E.},
     title = {On approximation of locally compact groups by finite algebraic systems},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {21--28},
     publisher = {mathdoc},
     volume = {10},
     year = {2004},
     doi = {10.1090/S1079-6762-04-00126-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00126-X/}
}
TY  - JOUR
AU  - Glebsky, L.
AU  - Gordon, E.
TI  - On approximation of locally compact groups by finite algebraic systems
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2004
SP  - 21
EP  - 28
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00126-X/
DO  - 10.1090/S1079-6762-04-00126-X
ID  - ERAAMS_2004_10_a2
ER  - 
%0 Journal Article
%A Glebsky, L.
%A Gordon, E.
%T On approximation of locally compact groups by finite algebraic systems
%J Electronic research announcements of the American Mathematical Society
%D 2004
%P 21-28
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00126-X/
%R 10.1090/S1079-6762-04-00126-X
%F ERAAMS_2004_10_a2
Glebsky, L.; Gordon, E. On approximation of locally compact groups by finite algebraic systems. Electronic research announcements of the American Mathematical Society, Tome 10 (2004), pp. 21-28. doi : 10.1090/S1079-6762-04-00126-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-04-00126-X/

[1] Albeverio, S., Gordon, E. I., Khrennikov, A. Yu. Finite-dimensional approximations of operators in the Hilbert spaces of functions on locally compact abelian groups Acta Appl. Math. 2000 33 73

[2] Alekseev, M. A., Glebskiĭ, L. Yu., Gordon, E. I. On approximations of groups, group actions and Hopf algebras Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 1999

[3] Evans, Trevor Some connections between residual finiteness, finite embeddability and the word problem J. London Math. Soc. (2) 1969 399 403

[4] Evans, Trevor Word problems Bull. Amer. Math. Soc. 1978 789 802

[5] Gordon, E. I. Nonstandard methods in commutative harmonic analysis 1997

[6] Gordon, Evgenii I., Rezvova, Olga A. On hyperfinite approximations of the field R 2001 93 102

[7] Gromov, M. Endomorphisms of symbolic algebraic varieties J. Eur. Math. Soc. (JEMS) 1999 109 197

[8] Hilton, A. J. W. Outlines of Latin squares 1987 225 241

[9] Von Neumann, John Invariant measures 1999

[10] Nonstandard analysis for the working mathematician 2000

[11] Quasigroups and loops: theory and applications 1990

[12] Algebraic theory of machines, languages, and semigroups 1968

[13] Ryser, Herbert John Combinatorial mathematics 1963

[14] Vershik, A. M., Gordon, E. I. Groups that are locally embeddable in the class of finite groups Algebra i Analiz 1997 71 97

Cité par Sources :