A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: Announcement of results
Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 125-134.

Voir la notice de l'article provenant de la source American Mathematical Society

We present a geometric mechanism for diffusion in Hamiltonian systems. We also present tools that allow us to verify it in a concrete model. In particular, we verify it in a system which presents the large gap problem.
DOI : 10.1090/S1079-6762-03-00121-5

Delshams, Amadeu 1 ; de la Llave, Rafael 2 ; Seara, Tere 1

1 Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
2 Department of Mathematics, University of Texas, Austin, TX 78712-1802
@article{ERAAMS_2003_09_a15,
     author = {Delshams, Amadeu and de la Llave, Rafael and Seara, Tere},
     title = {A geometric mechanism for diffusion in {Hamiltonian} systems overcoming the large gap problem: {Announcement} of results},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {125--134},
     publisher = {mathdoc},
     volume = {09},
     year = {2003},
     doi = {10.1090/S1079-6762-03-00121-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00121-5/}
}
TY  - JOUR
AU  - Delshams, Amadeu
AU  - de la Llave, Rafael
AU  - Seara, Tere
TI  - A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: Announcement of results
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2003
SP  - 125
EP  - 134
VL  - 09
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00121-5/
DO  - 10.1090/S1079-6762-03-00121-5
ID  - ERAAMS_2003_09_a15
ER  - 
%0 Journal Article
%A Delshams, Amadeu
%A de la Llave, Rafael
%A Seara, Tere
%T A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: Announcement of results
%J Electronic research announcements of the American Mathematical Society
%D 2003
%P 125-134
%V 09
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00121-5/
%R 10.1090/S1079-6762-03-00121-5
%F ERAAMS_2003_09_a15
Delshams, Amadeu; de la Llave, Rafael; Seara, Tere. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: Announcement of results. Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 125-134. doi : 10.1090/S1079-6762-03-00121-5. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00121-5/

[1] Arnol′D, V. I., Avez, A. Ergodic problems of classical mechanics 1968

[2] Arnol′D, V. I. Small denominators and problems of stability of motion in classical and celestial mechanics Uspehi Mat. Nauk 1963 91 192

[3] Arnol′D, V. I. Instability of dynamical systems with many degrees of freedom Dokl. Akad. Nauk SSSR 1964 9 12

[4] Berti, Massimiliano, Bolle, Philippe A functional analysis approach to Arnold diffusion Ann. Inst. H. Poincaré C Anal. Non Linéaire 2002 395 450

[5] Bolotin, S., Treschev, D. Unbounded growth of energy in nonautonomous Hamiltonian systems Nonlinearity 1999 365 388

[6] Chierchia, L., Gallavotti, G. Drift and diffusion in phase space Ann. Inst. H. Poincaré Phys. Théor. 1994 144

[7] Chirikov, Boris V. A universal instability of many-dimensional oscillator systems Phys. Rep. 1979 264 379

[8] Chirikov, B. V., Lieberman, M. A., Shepelyansky, D. L., Vivaldi, F. M. A theory of modulational diffusion Phys. D 1985 289 304

[9] Delshams, A., Gutiérrez, P. Splitting potential and the Poincaré-Melnikov method for whiskered tori in Hamiltonian systems J. Nonlinear Sci. 2000 433 476

[10] Douady, Raphaël, Le Calvez, Patrice Exemple de point fixe elliptique non topologiquement stable en dimension 4 C. R. Acad. Sci. Paris Sér. I Math. 1983 895 898

[11] Delshams, Amadeu, De La Llave, Rafael, Seara, Tere M. A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of 𝑇² Comm. Math. Phys. 2000 353 392

[12] Douady, Raphaël Stabilité ou instabilité des points fixes elliptiques Ann. Sci. École Norm. Sup. (4) 1988 1 46

[13] Delshams, Amadeu, Ramírez-Ros, Rafael Melnikov potential for exact symplectic maps Comm. Math. Phys. 1997 213 245

[14] Fontich, Ernest, Martín, Pau Arnold diffusion in perturbations of analytic integrable Hamiltonian systems Discrete Contin. Dynam. Systems 2001 61 84

[15] Fontich, Ernest, Martín, Pau Hamiltonian systems with orbits covering densely submanifolds of small codimension Nonlinear Anal. 2003 315 327

[16] Gallavotti, G. Arnold’s diffusion in isochronous systems Math. Phys. Anal. Geom. 1998/99 295 312

[17] Holmes, Philip J., Marsden, Jerrold E. Melnikov’s method and Arnol′d diffusion for perturbations of integrable Hamiltonian systems J. Math. Phys. 1982 669 675

[18] Long-time prediction in dynamics 1983

[19] Moeckel, Richard Transition tori in the five-body problem J. Differential Equations 1996 290 314

[20] Hamiltonian systems with three or more degrees of freedom 1999

[21] Tennyson, Jeffrey Resonance transport in near-integrable systems with many degrees of freedom Phys. D 1982 123 135

[22] Treshchëv, D. V. A mechanism for the destruction of resonance tori in Hamiltonian systems Mat. Sb. 1989

[23] Xia, Zhihong Arnold diffusion: a variational construction Doc. Math. 1998 867 877

Cité par Sources :