Delshams, Amadeu 1 ; de la Llave, Rafael 2 ; Seara, Tere 1
@article{10_1090_S1079_6762_03_00121_5,
author = {Delshams, Amadeu and de la Llave, Rafael and Seara, Tere},
title = {A geometric mechanism for diffusion in {Hamiltonian} systems overcoming the large gap problem: {Announcement} of results},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {125--134},
year = {2003},
volume = {09},
doi = {10.1090/S1079-6762-03-00121-5},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00121-5/}
}
TY - JOUR AU - Delshams, Amadeu AU - de la Llave, Rafael AU - Seara, Tere TI - A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: Announcement of results JO - Electronic research announcements of the American Mathematical Society PY - 2003 SP - 125 EP - 134 VL - 09 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00121-5/ DO - 10.1090/S1079-6762-03-00121-5 ID - 10_1090_S1079_6762_03_00121_5 ER -
%0 Journal Article %A Delshams, Amadeu %A de la Llave, Rafael %A Seara, Tere %T A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: Announcement of results %J Electronic research announcements of the American Mathematical Society %D 2003 %P 125-134 %V 09 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00121-5/ %R 10.1090/S1079-6762-03-00121-5 %F 10_1090_S1079_6762_03_00121_5
Delshams, Amadeu; de la Llave, Rafael; Seara, Tere. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: Announcement of results. Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 125-134. doi: 10.1090/S1079-6762-03-00121-5
[1] , Ergodic problems of classical mechanics 1968
[2] Small denominators and problems of stability of motion in classical and celestial mechanics Uspehi Mat. Nauk 1963 91 192
[3] Instability of dynamical systems with many degrees of freedom Dokl. Akad. Nauk SSSR 1964 9 12
[4] , A functional analysis approach to Arnold diffusion Ann. Inst. H. Poincaré C Anal. Non Linéaire 2002 395 450
[5] , Unbounded growth of energy in nonautonomous Hamiltonian systems Nonlinearity 1999 365 388
[6] , Drift and diffusion in phase space Ann. Inst. H. Poincaré Phys. Théor. 1994 144
[7] A universal instability of many-dimensional oscillator systems Phys. Rep. 1979 264 379
[8] , , , A theory of modulational diffusion Phys. D 1985 289 304
[9] , Splitting potential and the Poincaré-Melnikov method for whiskered tori in Hamiltonian systems J. Nonlinear Sci. 2000 433 476
[10] , Exemple de point fixe elliptique non topologiquement stable en dimension 4 C. R. Acad. Sci. Paris Sér. I Math. 1983 895 898
[11] , , A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of 𝑇² Comm. Math. Phys. 2000 353 392
[12] Stabilité ou instabilité des points fixes elliptiques Ann. Sci. École Norm. Sup. (4) 1988 1 46
[13] , Melnikov potential for exact symplectic maps Comm. Math. Phys. 1997 213 245
[14] , Arnold diffusion in perturbations of analytic integrable Hamiltonian systems Discrete Contin. Dynam. Systems 2001 61 84
[15] , Hamiltonian systems with orbits covering densely submanifolds of small codimension Nonlinear Anal. 2003 315 327
[16] Arnold’s diffusion in isochronous systems Math. Phys. Anal. Geom. 1998/99 295 312
[17] , Melnikov’s method and Arnol′d diffusion for perturbations of integrable Hamiltonian systems J. Math. Phys. 1982 669 675
[18] Long-time prediction in dynamics 1983
[19] Transition tori in the five-body problem J. Differential Equations 1996 290 314
[20] Hamiltonian systems with three or more degrees of freedom 1999
[21] Resonance transport in near-integrable systems with many degrees of freedom Phys. D 1982 123 135
[22] A mechanism for the destruction of resonance tori in Hamiltonian systems Mat. Sb. 1989
[23] Arnold diffusion: a variational construction Doc. Math. 1998 867 877
Cité par Sources :