Harmonic functions on Alexandrov spaces and their applications
Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 135-141.

Voir la notice de l'article provenant de la source American Mathematical Society

The main result can be stated roughly as follows: Let $M$ be an Alexandrov space, $\Omega \subset M$ an open domain and $f:\Omega \to \mathbb {R}$ a harmonic function. Then $f$ is Lipschitz on any compact subset of $\Omega$. Using this result I extend proofs of some classical theorems in Riemannian geometry to Alexandrov spaces.
DOI : 10.1090/S1079-6762-03-00120-3

Petrunin, Anton 1

1 Department of Mathematics, The Pennsylvania State University, University Park, PA 16802
@article{ERAAMS_2003_09_a16,
     author = {Petrunin, Anton},
     title = {Harmonic functions on {Alexandrov} spaces and their applications},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {135--141},
     publisher = {mathdoc},
     volume = {09},
     year = {2003},
     doi = {10.1090/S1079-6762-03-00120-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00120-3/}
}
TY  - JOUR
AU  - Petrunin, Anton
TI  - Harmonic functions on Alexandrov spaces and their applications
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2003
SP  - 135
EP  - 141
VL  - 09
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00120-3/
DO  - 10.1090/S1079-6762-03-00120-3
ID  - ERAAMS_2003_09_a16
ER  - 
%0 Journal Article
%A Petrunin, Anton
%T Harmonic functions on Alexandrov spaces and their applications
%J Electronic research announcements of the American Mathematical Society
%D 2003
%P 135-141
%V 09
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00120-3/
%R 10.1090/S1079-6762-03-00120-3
%F ERAAMS_2003_09_a16
Petrunin, Anton. Harmonic functions on Alexandrov spaces and their applications. Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 135-141. doi : 10.1090/S1079-6762-03-00120-3. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00120-3/

[1] Almgren, F. J., Jr. Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints Mem. Amer. Math. Soc. 1976

[2] Burago, Yu., Gromov, M., Perel′Man, G. A. D. Aleksandrov spaces with curvatures bounded below Uspekhi Mat. Nauk 1992

[3] Federer, Herbert Geometric measure theory 1969

[4] Milman, Vitali D., Schechtman, Gideon Asymptotic theory of finite-dimensional normed spaces 1986

[5] Ladyzhenskaya, O. A., Ural′Tseva, N. N. Lineĭnye i kvazilineĭnye uravneniya èllipticheskogo tipa 1973 576

[6] Kuwae, Kazuhiro, Machigashira, Yoshiroh, Shioya, Takashi Beginning of analysis on Alexandrov spaces 2000 275 284

[7] Kuwae, Kazuhiro, Machigashira, Yoshiroh, Shioya, Takashi Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces Math. Z. 2001 269 316

[8] Nikolaev, I. G. Smoothness of the metric of spaces with bilaterally bounded curvature in the sense of A. D. Aleksandrov Sibirsk. Mat. Zh. 1983 114 132

[9] Perel′Man, G. Ya., Petrunin, A. M. Extremal subsets in Aleksandrov spaces and the generalized Liberman theorem Algebra i Analiz 1993 242 256

[10] Petrunin, A. Parallel transportation for Alexandrov space with curvature bounded below Geom. Funct. Anal. 1998 123 148

[11] Reshetnyak, Yu. G. Two-dimensional manifolds of bounded curvature 1989

Cité par Sources :