Rigidity properties of ℤ^{𝕕}-actions on tori and solenoids
Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 99-110.

Voir la notice de l'article provenant de la source American Mathematical Society

We show that Haar measure is a unique measure on a torus or more generally a solenoid $X$ invariant under a not virtually cyclic totally irreducible $\mathbb Z^d$-action by automorphisms of $X$ such that at least one element of the action acts with positive entropy. We also give a corresponding theorem in the non-irreducible case. These results have applications regarding measurable factors and joinings of these algebraic $\mathbb Z^d$-actions.
DOI : 10.1090/S1079-6762-03-00117-3

Einsiedler, Manfred 1 ; Lindenstrauss, Elon 2, 3

1 Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195
2 Department of Mathematics, Stanford University, Stanford, CA 94305
3 Courant Institute of Mathematical Sciences, 251 Mercer St., New York, NY 10012
@article{ERAAMS_2003_09_a12,
     author = {Einsiedler, Manfred and Lindenstrauss, Elon},
     title = {Rigidity properties of {\ensuremath{\mathbb{Z}}^{\ensuremath{\mathbb{d}}}-actions} on tori and solenoids},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {09},
     year = {2003},
     doi = {10.1090/S1079-6762-03-00117-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00117-3/}
}
TY  - JOUR
AU  - Einsiedler, Manfred
AU  - Lindenstrauss, Elon
TI  - Rigidity properties of ℤ^{𝕕}-actions on tori and solenoids
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2003
SP  - 99
EP  - 110
VL  - 09
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00117-3/
DO  - 10.1090/S1079-6762-03-00117-3
ID  - ERAAMS_2003_09_a12
ER  - 
%0 Journal Article
%A Einsiedler, Manfred
%A Lindenstrauss, Elon
%T Rigidity properties of ℤ^{𝕕}-actions on tori and solenoids
%J Electronic research announcements of the American Mathematical Society
%D 2003
%P 99-110
%V 09
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00117-3/
%R 10.1090/S1079-6762-03-00117-3
%F ERAAMS_2003_09_a12
Einsiedler, Manfred; Lindenstrauss, Elon. Rigidity properties of ℤ^{𝕕}-actions on tori and solenoids. Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 99-110. doi : 10.1090/S1079-6762-03-00117-3. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00117-3/

[1] Berend, Daniel Multi-invariant sets on tori Trans. Amer. Math. Soc. 1983 509 532

[2] Berend, Daniel Multi-invariant sets on compact abelian groups Trans. Amer. Math. Soc. 1984 505 535

[3] Feldman, J. A generalization of a result of R. Lyons about measures on [0,1) Israel J. Math. 1993 281 287

[4] Furstenberg, Harry Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation Math. Systems Theory 1967 1 49

[5] Host, Bernard Nombres normaux, entropie, translations Israel J. Math. 1995 419 428

[6] Hu, Hu Yi Some ergodic properties of commuting diffeomorphisms Ergodic Theory Dynam. Systems 1993 73 100

[7] Johnson, Aimee S. A. Measures on the circle invariant under multiplication by a nonlacunary subsemigroup of the integers Israel J. Math. 1992 211 240

[8] Kalinin, Boris, Katok, Anatole Invariant measures for actions of higher rank abelian groups 2001 593 637

[9] Katok, Anatole, Katok, Svetlana, Schmidt, Klaus Rigidity of measurable structure for ℤ^{𝕕}-actions by automorphisms of a torus Comment. Math. Helv. 2002 718 745

[10] Katok, A., Spatzier, R. J. Invariant measures for higher-rank hyperbolic abelian actions Ergodic Theory Dynam. Systems 1996 751 778

[11] Katok, A., Spatzier, R. J. Corrections to: “Invariant measures for higher-rank hyperbolic abelian actions” [Ergodic Theory Dynam. Systems 16 (1996), no. 4, 751–778 Ergodic Theory Dynam. Systems 1998 503 507

[12] Ledrappier, F., Young, L.-S. The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula Ann. of Math. (2) 1985 509 539

[13] Ledrappier, F., Young, L.-S. The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula Ann. of Math. (2) 1985 509 539

[14] Lindenstrauss, Elon 𝑝-adic foliation and equidistribution Israel J. Math. 2001 29 42

[15] Lindenstrauss, Elon, Meiri, David, Peres, Yuval Entropy of convolutions on the circle Ann. of Math. (2) 1999 871 904

[16] Lyons, Russell On measures simultaneously 2- and 3-invariant Israel J. Math. 1988 219 224

[17] Oxtoby, J. C., Ulam, S. M. On the existence of a measure invariant under a transformation Ann. of Math. (2) 1939 560 566

[18] Rudolph, Daniel J. Ă—2 and Ă—3 invariant measures and entropy Ergodic Theory Dynam. Systems 1990 395 406

[19] Schmidt, Klaus Dynamical systems of algebraic origin 1995

Cité par Sources :