Voir la notice de l'article provenant de la source American Mathematical Society
Einsiedler, Manfred 1 ; Lindenstrauss, Elon 2, 3
@article{ERAAMS_2003_09_a12, author = {Einsiedler, Manfred and Lindenstrauss, Elon}, title = {Rigidity properties of {\ensuremath{\mathbb{Z}}^{\ensuremath{\mathbb{d}}}-actions} on tori and solenoids}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {99--110}, publisher = {mathdoc}, volume = {09}, year = {2003}, doi = {10.1090/S1079-6762-03-00117-3}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00117-3/} }
TY - JOUR AU - Einsiedler, Manfred AU - Lindenstrauss, Elon TI - Rigidity properties of ℤ^{𝕕}-actions on tori and solenoids JO - Electronic research announcements of the American Mathematical Society PY - 2003 SP - 99 EP - 110 VL - 09 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00117-3/ DO - 10.1090/S1079-6762-03-00117-3 ID - ERAAMS_2003_09_a12 ER -
%0 Journal Article %A Einsiedler, Manfred %A Lindenstrauss, Elon %T Rigidity properties of ℤ^{𝕕}-actions on tori and solenoids %J Electronic research announcements of the American Mathematical Society %D 2003 %P 99-110 %V 09 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00117-3/ %R 10.1090/S1079-6762-03-00117-3 %F ERAAMS_2003_09_a12
Einsiedler, Manfred; Lindenstrauss, Elon. Rigidity properties of ℤ^{𝕕}-actions on tori and solenoids. Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 99-110. doi : 10.1090/S1079-6762-03-00117-3. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00117-3/
[1] Multi-invariant sets on tori Trans. Amer. Math. Soc. 1983 509 532
[2] Multi-invariant sets on compact abelian groups Trans. Amer. Math. Soc. 1984 505 535
[3] A generalization of a result of R. Lyons about measures on [0,1) Israel J. Math. 1993 281 287
[4] Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation Math. Systems Theory 1967 1 49
[5] Nombres normaux, entropie, translations Israel J. Math. 1995 419 428
[6] Some ergodic properties of commuting diffeomorphisms Ergodic Theory Dynam. Systems 1993 73 100
[7] Measures on the circle invariant under multiplication by a nonlacunary subsemigroup of the integers Israel J. Math. 1992 211 240
[8] Invariant measures for actions of higher rank abelian groups 2001 593 637
,[9] Rigidity of measurable structure for ℤ^{𝕕}-actions by automorphisms of a torus Comment. Math. Helv. 2002 718 745
, ,[10] Invariant measures for higher-rank hyperbolic abelian actions Ergodic Theory Dynam. Systems 1996 751 778
,[11] Corrections to: “Invariant measures for higher-rank hyperbolic abelian actions” [Ergodic Theory Dynam. Systems 16 (1996), no. 4, 751–778 Ergodic Theory Dynam. Systems 1998 503 507
,[12] The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula Ann. of Math. (2) 1985 509 539
,[13] The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula Ann. of Math. (2) 1985 509 539
,[14] 𝑝-adic foliation and equidistribution Israel J. Math. 2001 29 42
[15] Entropy of convolutions on the circle Ann. of Math. (2) 1999 871 904
, ,[16] On measures simultaneously 2- and 3-invariant Israel J. Math. 1988 219 224
[17] On the existence of a measure invariant under a transformation Ann. of Math. (2) 1939 560 566
,[18] Ă—2 and Ă—3 invariant measures and entropy Ergodic Theory Dynam. Systems 1990 395 406
[19] Dynamical systems of algebraic origin 1995
Cité par Sources :