On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations
Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 88-93.

Voir la notice de l'article provenant de la source American Mathematical Society

We study the Dirichlet problem in half-space for the equation ${\Delta u+g(u)|\nabla u|^2=0,}$ where $g$ is continuous or has a power singularity (in the latter case positive solutions are considered). The results presented give necessary and sufficient conditions for the existence of (pointwise or uniform) limit of the solution as $y\to \infty ,$ where $y$ denotes the spatial variable, orthogonal to the hyperplane of boundary-value data. These conditions are given in terms of integral means of the boundary-value function.
DOI : 10.1090/S1079-6762-03-00115-X

Denisov, Vasily 1 ; Muravnik, Andrey 2

1 Moscow State University, Faculty of Computational Mathematics and Cybernetics, Leninskie gory, Moscow 119899, Russia
2 Department of Differential Equations, Moscow State Aviation Institute, Volokolamskoe shosse 4, Moscow, A-80, GSP-3, 125993, Russia
@article{ERAAMS_2003_09_a10,
     author = {Denisov, Vasily and Muravnik, Andrey},
     title = {On asymptotic behavior of solutions of the {Dirichlet} problem in half-space for linear and quasi-linear elliptic equations},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {88--93},
     publisher = {mathdoc},
     volume = {09},
     year = {2003},
     doi = {10.1090/S1079-6762-03-00115-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00115-X/}
}
TY  - JOUR
AU  - Denisov, Vasily
AU  - Muravnik, Andrey
TI  - On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2003
SP  - 88
EP  - 93
VL  - 09
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00115-X/
DO  - 10.1090/S1079-6762-03-00115-X
ID  - ERAAMS_2003_09_a10
ER  - 
%0 Journal Article
%A Denisov, Vasily
%A Muravnik, Andrey
%T On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations
%J Electronic research announcements of the American Mathematical Society
%D 2003
%P 88-93
%V 09
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00115-X/
%R 10.1090/S1079-6762-03-00115-X
%F ERAAMS_2003_09_a10
Denisov, Vasily; Muravnik, Andrey. On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations. Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 88-93. doi : 10.1090/S1079-6762-03-00115-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00115-X/

[1] Denisov, V. N., Repnikov, V. D. Stabilization of the solution of the Cauchy problem for parabolic equations Differentsial′nye Uravneniya 1984 20 41

[2] Gilbarg, David, Trudinger, Neil S. Elliptic partial differential equations of second order 1977

[3] Medina, Ernesto, Hwa, Terence, Kardar, Mehran, Zhang, Yi Cheng Burgers’ equation with correlated noise: renormalization-group analysis and applications to directed polymers and interface growth Phys. Rev. A (3) 1989 3053 3075

[4] Pohožaev, S. I. Equations of the type Δ𝑢 Mat. Sb. (N.S.) 1980

[5] Mielke, Alexander Essential manifolds for an elliptic problem in an infinite strip J. Differential Equations 1994 322 355

[6] De Giorgi, Ennio Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 1957 25 43

[7] Krylov, N. V., Safonov, M. V. A property of the solutions of parabolic equations with measurable coefficients Izv. Akad. Nauk SSSR Ser. Mat. 1980

[8] Guščin, A. K., Mihaĭlov, V. P. The stabilization of the solution of the Cauchy problem for a parabolic equation Differencial′nye Uravnenija 1971 297 311

[9] Kamin, S. On stabilisation of solutions of the Cauchy problem for parabolic equations Proc. Roy. Soc. Edinburgh Sect. A 1976/77 43 53

[10] Žikov, V. V. The stabilization of the solutions of parabolic equations Mat. Sb. (N.S.) 1977

[11] Bitsadze, A. V. Nekotorye klassy uravneniĭ v chastnykh proizvodnykh 1981 448

Cité par Sources :