Voir la notice de l'article provenant de la source American Mathematical Society
Druet, Olivier 1 ; Hebey, Emmanuel 2 ; Robert, FrĂ©dĂ©ric 3
@article{ERAAMS_2003_09_a2, author = {Druet, Olivier and Hebey, Emmanuel and Robert, Fr\'ed\'eric}, title = {A {\ensuremath{\mathit{C}}â°-theory} for the blow-up of second order elliptic equations of critical {Sobolev} growth}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {19--25}, publisher = {mathdoc}, volume = {09}, year = {2003}, doi = {10.1090/S1079-6762-03-00108-2}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00108-2/} }
TY - JOUR AU - Druet, Olivier AU - Hebey, Emmanuel AU - Robert, FrĂ©dĂ©ric TI - A đ¶â°-theory for the blow-up of second order elliptic equations of critical Sobolev growth JO - Electronic research announcements of the American Mathematical Society PY - 2003 SP - 19 EP - 25 VL - 09 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00108-2/ DO - 10.1090/S1079-6762-03-00108-2 ID - ERAAMS_2003_09_a2 ER -
%0 Journal Article %A Druet, Olivier %A Hebey, Emmanuel %A Robert, FrĂ©dĂ©ric %T A đ¶â°-theory for the blow-up of second order elliptic equations of critical Sobolev growth %J Electronic research announcements of the American Mathematical Society %D 2003 %P 19-25 %V 09 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00108-2/ %R 10.1090/S1079-6762-03-00108-2 %F ERAAMS_2003_09_a2
Druet, Olivier; Hebey, Emmanuel; Robert, FrĂ©dĂ©ric. A đ¶â°-theory for the blow-up of second order elliptic equations of critical Sobolev growth. Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 19-25. doi : 10.1090/S1079-6762-03-00108-2. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00108-2/
[1] Elliptic equations with nearly critical growth J. Differential Equations 1987 349 365
,[2] Asymptotics for elliptic equations involving critical growth 1989 149 192
,[3] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth Comm. Pure Appl. Math. 1989 271 297
, ,[4] The best constants problem in Sobolev inequalities Math. Ann. 1999 327 346
[5] Sharp local isoperimetric inequalities involving the scalar curvature Proc. Amer. Math. Soc. 2002 2351 2361
[6] Asymptotic profile for the sub-extremals of the sharp Sobolev inequality on the sphere Comm. Partial Differential Equations 2001 743 778
,[7] Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent Ann. Inst. H. Poincaré C Anal. Non Linéaire 1991 159 174
[8] Nonlinear analysis on manifolds: Sobolev spaces and inequalities 1999
[9] The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds Duke Math. J. 1995 235 279
,[10] Prescribing scalar curvature on đâż and related problems. I J. Differential Equations 1995 319 410
[11] Prescribing scalar curvature on đâż and related problems. II. Existence and compactness Comm. Pure Appl. Math. 1996 541 597
[12] Asymptotic behaviour of a nonlinear elliptic equation with critical Sobolev exponent: the radial case Adv. Differential Equations 2001 821 846
[13] Variational theory for the total scalar curvature functional for Riemannian metrics and related topics 1989 120 154
[14] On the number of constant scalar curvature metrics in a conformal class 1991 311 320
[15] Prescribed scalar curvature on the đ-sphere Calc. Var. Partial Differential Equations 1996 1 25
,[16] A global compactness result for elliptic boundary value problems involving limiting nonlinearities Math. Z. 1984 511 517
Cité par Sources :