A đ¶â°-theory for the blow-up of second order elliptic equations of critical Sobolev growth
Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 19-25.

Voir la notice de l'article provenant de la source American Mathematical Society

Let $(M,g)$ be a smooth compact Riemannian manifold of dimension $n \ge 3$, and $\Delta _g = -div_g\nabla$ the Laplace-Beltrami operator. Also let $2^\star$ be the critical Sobolev exponent for the embedding of the Sobolev space $H_1^2(M)$ into Lebesgue spaces, and $h$ a smooth function on $M$. Elliptic equations of critical Sobolev growth like \[ \Delta _gu + hu = u^{2^\star -1}\] have been the target of investigation for decades. A very nice $H_1^2$-theory for the asymptotic behaviour of solutions of such an equation is available since the 1980’s. In this announcement we present the $C^0$-theory we have recently developed. Such a theory provides sharp pointwise estimates for the asymptotic behaviour of solutions of the above equation.
DOI : 10.1090/S1079-6762-03-00108-2

Druet, Olivier 1 ; Hebey, Emmanuel 2 ; Robert, FrĂ©dĂ©ric 3

1 DĂ©partement de MathĂ©matiques, Ecole Normale SupĂ©rieure de Lyon, 46 allĂ©e d’Italie, 69364 Lyon cedex 07, France
2 Département de Mathématiques, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise cedex, France
3 Department of Mathematics, ETH ZĂŒrich, CH-8092 ZĂŒrich, Switzerland
@article{ERAAMS_2003_09_a2,
     author = {Druet, Olivier and Hebey, Emmanuel and Robert, Fr\'ed\'eric},
     title = {A {\ensuremath{\mathit{C}}⁰-theory} for the blow-up of second order elliptic equations of critical {Sobolev} growth},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {19--25},
     publisher = {mathdoc},
     volume = {09},
     year = {2003},
     doi = {10.1090/S1079-6762-03-00108-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00108-2/}
}
TY  - JOUR
AU  - Druet, Olivier
AU  - Hebey, Emmanuel
AU  - Robert, Frédéric
TI  - A đ¶â°-theory for the blow-up of second order elliptic equations of critical Sobolev growth
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2003
SP  - 19
EP  - 25
VL  - 09
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00108-2/
DO  - 10.1090/S1079-6762-03-00108-2
ID  - ERAAMS_2003_09_a2
ER  - 
%0 Journal Article
%A Druet, Olivier
%A Hebey, Emmanuel
%A Robert, Frédéric
%T A đ¶â°-theory for the blow-up of second order elliptic equations of critical Sobolev growth
%J Electronic research announcements of the American Mathematical Society
%D 2003
%P 19-25
%V 09
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00108-2/
%R 10.1090/S1079-6762-03-00108-2
%F ERAAMS_2003_09_a2
Druet, Olivier; Hebey, Emmanuel; Robert, FrĂ©dĂ©ric. A đ¶â°-theory for the blow-up of second order elliptic equations of critical Sobolev growth. Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 19-25. doi : 10.1090/S1079-6762-03-00108-2. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00108-2/

[1] Atkinson, F. V., Peletier, L. A. Elliptic equations with nearly critical growth J. Differential Equations 1987 349 365

[2] Brezis, HaĂŻm, Peletier, Lambertus A. Asymptotics for elliptic equations involving critical growth 1989 149 192

[3] Caffarelli, Luis A., Gidas, Basilis, Spruck, Joel Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth Comm. Pure Appl. Math. 1989 271 297

[4] Druet, Olivier The best constants problem in Sobolev inequalities Math. Ann. 1999 327 346

[5] Druet, Olivier Sharp local isoperimetric inequalities involving the scalar curvature Proc. Amer. Math. Soc. 2002 2351 2361

[6] Druet, Olivier, Robert, Frédéric Asymptotic profile for the sub-extremals of the sharp Sobolev inequality on the sphere Comm. Partial Differential Equations 2001 743 778

[7] Han, Zheng-Chao Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent Ann. Inst. H. Poincaré C Anal. Non Linéaire 1991 159 174

[8] Hebey, Emmanuel Nonlinear analysis on manifolds: Sobolev spaces and inequalities 1999

[9] Hebey, Emmanuel, Vaugon, Michel The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds Duke Math. J. 1995 235 279

[10] Li, Yan Yan Prescribing scalar curvature on 𝑆ⁿ and related problems. I J. Differential Equations 1995 319 410

[11] Li, Yanyan Prescribing scalar curvature on 𝑆ⁿ and related problems. II. Existence and compactness Comm. Pure Appl. Math. 1996 541 597

[12] Robert, Frédéric Asymptotic behaviour of a nonlinear elliptic equation with critical Sobolev exponent: the radial case Adv. Differential Equations 2001 821 846

[13] Schoen, Richard M. Variational theory for the total scalar curvature functional for Riemannian metrics and related topics 1989 120 154

[14] Schoen, Richard M. On the number of constant scalar curvature metrics in a conformal class 1991 311 320

[15] Schoen, Richard, Zhang, Dong Prescribed scalar curvature on the 𝑛-sphere Calc. Var. Partial Differential Equations 1996 1 25

[16] Struwe, Michael A global compactness result for elliptic boundary value problems involving limiting nonlinearities Math. Z. 1984 511 517

Cité par Sources :