Voir la notice de l'article provenant de la source American Mathematical Society
Bonfiglioli, Andrea 1 ; Lanconelli, Ermanno 1 ; Uguzzoni, Francesco 1
@article{ERAAMS_2003_09_a1, author = {Bonfiglioli, Andrea and Lanconelli, Ermanno and Uguzzoni, Francesco}, title = {Levi{\textquoteright}s parametrix for some sub-elliptic non-divergence form operators}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {10--18}, publisher = {mathdoc}, volume = {09}, year = {2003}, doi = {10.1090/S1079-6762-03-00107-0}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00107-0/} }
TY - JOUR AU - Bonfiglioli, Andrea AU - Lanconelli, Ermanno AU - Uguzzoni, Francesco TI - Levi’s parametrix for some sub-elliptic non-divergence form operators JO - Electronic research announcements of the American Mathematical Society PY - 2003 SP - 10 EP - 18 VL - 09 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00107-0/ DO - 10.1090/S1079-6762-03-00107-0 ID - ERAAMS_2003_09_a1 ER -
%0 Journal Article %A Bonfiglioli, Andrea %A Lanconelli, Ermanno %A Uguzzoni, Francesco %T Levi’s parametrix for some sub-elliptic non-divergence form operators %J Electronic research announcements of the American Mathematical Society %D 2003 %P 10-18 %V 09 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00107-0/ %R 10.1090/S1079-6762-03-00107-0 %F ERAAMS_2003_09_a1
Bonfiglioli, Andrea; Lanconelli, Ermanno; Uguzzoni, Francesco. Levi’s parametrix for some sub-elliptic non-divergence form operators. Electronic research announcements of the American Mathematical Society, Tome 09 (2003), pp. 10-18. doi : 10.1090/S1079-6762-03-00107-0. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-03-00107-0/
[1] 𝐿^{𝑝} estimates for nonvariational hypoelliptic operators with VMO coefficients Trans. Amer. Math. Soc. 2000 781 822
,[2] Regularity for quasilinear equations and 1-quasiconformal maps in Carnot groups Math. Ann. 1999 263 295
[3] Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations Amer. J. Math. 1996 1153 1196
, ,[4] Harnack’s inequality for sum of squares of vector fields plus a potential Amer. J. Math. 1993 699 734
, ,[5] Subelliptic estimates and function spaces on nilpotent Lie groups Ark. Mat. 1975 161 207
[6] Weighted Poincaré inequalities for Hörmander vector fields and local regularity for a class of degenerate elliptic equations Potential Anal. 1995 361 375
, ,[7] Hypoelliptic second order differential equations Acta Math. 1967 147 171
[8] Flow of real hypersurfaces by the trace of the Levi form Math. Res. Lett. 1999 645 661
,[9] The Yamabe problem on CR manifolds J. Differential Geom. 1987 167 197
,[10] Estimates for the heat kernel for a sum of squares of vector fields Indiana Univ. Math. J. 1986 835 854
,[11] Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator Ann. of Math. (2) 1988 165 189
,[12] Existence and size estimates for the Green’s functions of differential operators constructed from degenerate vector fields Comm. Partial Differential Equations 1992 1213 1251
[13] Real hypersurfaces evolving by Levi curvature: smooth regularity of solutions to the parabolic Levi equation Comm. Partial Differential Equations 2001 1633 1664
[14] A tour of subriemannian geometries, their geodesics and applications 2002
[15] Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux Math. Inform. Sci. Humaines 1999 5 101
,[16] Hypoelliptic differential operators and nilpotent groups Acta Math. 1976 247 320
,[17] Weak solutions for the Levi equation and envelope of holomorphy J. Funct. Anal. 1991 392 407
,[18] Analysis and geometry on groups 1992
, ,[19] Regularity for quasilinear second-order subelliptic equations Comm. Pure Appl. Math. 1992 77 96
Cité par Sources :