Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed 𝐿_{𝑝}-norm
Electronic research announcements of the American Mathematical Society, Tome 08 (2002), pp. 47-51.

Voir la notice de l'article provenant de la source American Mathematical Society

We determine the exact regularity of the trace of a function $u \in L_{q} (0,T; W_{p}^{2}(\Omega ))$ $\cap W^{1}_{q} (0,T; {L_{p} (\Omega ))}$ and of the trace of its spatial gradient on $\partial \Omega \times ( 0,T )$ in the regime $p \le q$. While for $p=q$ both the spatial and temporal regularity of the traces can be completely characterized by fractional order Sobolev-Slobodetskii spaces, for $p \neq q$ the Lizorkin-Triebel spaces turn out to be necessary for characterizing the sharp temporal regularity.
DOI : 10.1090/S1079-6762-02-00104-X

Weidemaier, Peter 1

1 Fraunhofer-Institut Kurzzeitdynamik, Eckerstr. 4, D-79104 Freiburg, Germany
@article{ERAAMS_2002_08_a5,
     author = {Weidemaier, Peter},
     title = {Maximal regularity for parabolic equations with inhomogeneous boundary conditions in {Sobolev} spaces with mixed {\ensuremath{\mathit{L}}_{\ensuremath{\mathit{p}}}-norm}},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {47--51},
     publisher = {mathdoc},
     volume = {08},
     year = {2002},
     doi = {10.1090/S1079-6762-02-00104-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00104-X/}
}
TY  - JOUR
AU  - Weidemaier, Peter
TI  - Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed 𝐿_{𝑝}-norm
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2002
SP  - 47
EP  - 51
VL  - 08
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00104-X/
DO  - 10.1090/S1079-6762-02-00104-X
ID  - ERAAMS_2002_08_a5
ER  - 
%0 Journal Article
%A Weidemaier, Peter
%T Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed 𝐿_{𝑝}-norm
%J Electronic research announcements of the American Mathematical Society
%D 2002
%P 47-51
%V 08
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00104-X/
%R 10.1090/S1079-6762-02-00104-X
%F ERAAMS_2002_08_a5
Weidemaier, Peter. Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed 𝐿_{𝑝}-norm. Electronic research announcements of the American Mathematical Society, Tome 08 (2002), pp. 47-51. doi : 10.1090/S1079-6762-02-00104-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00104-X/

[1] Besov, Oleg V., Il′In, Valentin P., Nikol′Skiĭ, Sergey M. Integral representations of functions and imbedding theorems. Vol. I 1978

[2] Cannarsa, Piermarco, Vespri, Vincenzo On maximal 𝐿^{𝑝} regularity for the abstract Cauchy problem Boll. Un. Mat. Ital. B (6) 1986 165 175

[3] Clément, Philippe, Prüss, Jan Global existence for a semilinear parabolic Volterra equation Math. Z. 1992 17 26

[4] Coulhon, Thierry, Duong, Xuan Thinh Maximal regularity and kernel bounds: observations on a theorem by Hieber and Prüss Adv. Differential Equations 2000 343 368

[5] Grisvard, Pierre Commutativité de deux foncteurs d’interpolation et applications J. Math. Pures Appl. (9) 1966 207 290

[6] Hieber, Matthias, Prüss, Jan Heat kernels and maximal 𝐿^{𝑝}-𝐿^{𝑞} estimates for parabolic evolution equations Comm. Partial Differential Equations 1997 1647 1669

[7] Il′In, V. P., Solonnikov, V. A. Some properties of differentiable functions of several variables Trudy Mat. Inst. Steklov. 1962 205 226

[8] Iwashita, Hirokazu 𝐿_{𝑞}-𝐿ᵣ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in 𝐿_{𝑞} spaces Math. Ann. 1989 265 288

[9] Krylov, N. V. The Calderón-Zygmund theorem and its applications to parabolic equations Algebra i Analiz 2001 1 25

[10] Kufner, Alois, John, Oldřich, Fučík, Svatopluk Function spaces 1977

[11] Ladyženskaja, O. A., Solonnikov, V. A., Ural′Ceva, N. N. Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa 1967 736

[12] Solonnikov, V. A. A priori estimates for solutions of second-order equations of parabolic type Trudy Mat. Inst. Steklov. 1964 133 212

[13] Triebel, Hans Theory of function spaces 1983 284

[14] Von Wahl, Wolf The equation 𝑢′+𝐴(𝑡)𝑢 J. London Math. Soc. (2) 1982 483 497

[15] Weidemaier, Peter On the trace theory for functions in Sobolev spaces with mixed 𝐿_{𝑝}-norm Czechoslovak Math. J. 1994 7 20

[16] Weidemaier, Peter On the sharp initial trace of functions with derivatives in 𝐿_{𝑞}(0,𝑇 Boll. Un. Mat. Ital. B (7) 1995 321 338

[17] Weidemaier, Peter Existence results in 𝐿_{𝑝}-𝐿_{𝑞} spaces for second order parabolic equations with inhomogeneous Dirichlet boundary conditions 1998 189 200

[18] Weidemaier, Peter, Sinnamon, Gord Perturbed weighted Hardy inequalities J. Math. Anal. Appl. 1999 287 292

Cité par Sources :