Voir la notice de l'article provenant de la source American Mathematical Society
@article{ERAAMS_2002_08_a5, author = {Weidemaier, Peter}, title = {Maximal regularity for parabolic equations with inhomogeneous boundary conditions in {Sobolev} spaces with mixed {\ensuremath{\mathit{L}}_{\ensuremath{\mathit{p}}}-norm}}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {47--51}, publisher = {mathdoc}, volume = {08}, year = {2002}, doi = {10.1090/S1079-6762-02-00104-X}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00104-X/} }
TY - JOUR AU - Weidemaier, Peter TI - Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed 𝐿_{𝑝}-norm JO - Electronic research announcements of the American Mathematical Society PY - 2002 SP - 47 EP - 51 VL - 08 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00104-X/ DO - 10.1090/S1079-6762-02-00104-X ID - ERAAMS_2002_08_a5 ER -
%0 Journal Article %A Weidemaier, Peter %T Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed 𝐿_{𝑝}-norm %J Electronic research announcements of the American Mathematical Society %D 2002 %P 47-51 %V 08 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00104-X/ %R 10.1090/S1079-6762-02-00104-X %F ERAAMS_2002_08_a5
Weidemaier, Peter. Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed 𝐿_{𝑝}-norm. Electronic research announcements of the American Mathematical Society, Tome 08 (2002), pp. 47-51. doi : 10.1090/S1079-6762-02-00104-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00104-X/
[1] Integral representations of functions and imbedding theorems. Vol. I 1978
, ,[2] On maximal 𝐿^{𝑝} regularity for the abstract Cauchy problem Boll. Un. Mat. Ital. B (6) 1986 165 175
,[3] Global existence for a semilinear parabolic Volterra equation Math. Z. 1992 17 26
,[4] Maximal regularity and kernel bounds: observations on a theorem by Hieber and Prüss Adv. Differential Equations 2000 343 368
,[5] Commutativité de deux foncteurs d’interpolation et applications J. Math. Pures Appl. (9) 1966 207 290
[6] Heat kernels and maximal 𝐿^{𝑝}-𝐿^{𝑞} estimates for parabolic evolution equations Comm. Partial Differential Equations 1997 1647 1669
,[7] Some properties of differentiable functions of several variables Trudy Mat. Inst. Steklov. 1962 205 226
,[8] 𝐿_{𝑞}-𝐿ᵣ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in 𝐿_{𝑞} spaces Math. Ann. 1989 265 288
[9] The Calderón-Zygmund theorem and its applications to parabolic equations Algebra i Analiz 2001 1 25
[10] Function spaces 1977
, ,[11] Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa 1967 736
, ,[12] A priori estimates for solutions of second-order equations of parabolic type Trudy Mat. Inst. Steklov. 1964 133 212
[13] Theory of function spaces 1983 284
[14] The equation 𝑢′+𝐴(𝑡)𝑢 J. London Math. Soc. (2) 1982 483 497
[15] On the trace theory for functions in Sobolev spaces with mixed 𝐿_{𝑝}-norm Czechoslovak Math. J. 1994 7 20
[16] On the sharp initial trace of functions with derivatives in 𝐿_{𝑞}(0,𝑇 Boll. Un. Mat. Ital. B (7) 1995 321 338
[17] Existence results in 𝐿_{𝑝}-𝐿_{𝑞} spaces for second order parabolic equations with inhomogeneous Dirichlet boundary conditions 1998 189 200
[18] Perturbed weighted Hardy inequalities J. Math. Anal. Appl. 1999 287 292
,Cité par Sources :