On the construction of a 𝐶²-counterexample to the Hamiltonian Seifert Conjecture in ℝ⁴
Electronic research announcements of the American Mathematical Society, Tome 08 (2002), pp. 11-19.

Voir la notice de l'article provenant de la source American Mathematical Society

We outline the construction of a proper $C^2$-smooth function on $\mathbb {R}^4$ such that its Hamiltonian flow has no periodic orbits on at least one regular level set. This result can be viewed as a $C^2$-smooth counterexample to the Hamiltonian Seifert conjecture in dimension four.
DOI : 10.1090/S1079-6762-02-00100-2

Ginzburg, Viktor 1 ; Gürel, Başak 1

1 Department of Mathematics, UC Santa Cruz, Santa Cruz, CA 95064, USA
@article{ERAAMS_2002_08_a1,
     author = {Ginzburg, Viktor and G\"urel, Ba\c{s}ak},
     title = {On the construction of a {\ensuremath{\mathit{C}}{\texttwosuperior}-counterexample} to the {Hamiltonian} {Seifert} {Conjecture} in {\ensuremath{\mathbb{R}}⁴}},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {11--19},
     publisher = {mathdoc},
     volume = {08},
     year = {2002},
     doi = {10.1090/S1079-6762-02-00100-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00100-2/}
}
TY  - JOUR
AU  - Ginzburg, Viktor
AU  - Gürel, Başak
TI  - On the construction of a 𝐶²-counterexample to the Hamiltonian Seifert Conjecture in ℝ⁴
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2002
SP  - 11
EP  - 19
VL  - 08
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00100-2/
DO  - 10.1090/S1079-6762-02-00100-2
ID  - ERAAMS_2002_08_a1
ER  - 
%0 Journal Article
%A Ginzburg, Viktor
%A Gürel, Başak
%T On the construction of a 𝐶²-counterexample to the Hamiltonian Seifert Conjecture in ℝ⁴
%J Electronic research announcements of the American Mathematical Society
%D 2002
%P 11-19
%V 08
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00100-2/
%R 10.1090/S1079-6762-02-00100-2
%F ERAAMS_2002_08_a1
Ginzburg, Viktor; Gürel, Başak. On the construction of a 𝐶²-counterexample to the Hamiltonian Seifert Conjecture in ℝ⁴. Electronic research announcements of the American Mathematical Society, Tome 08 (2002), pp. 11-19. doi : 10.1090/S1079-6762-02-00100-2. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00100-2/

[1] Ginzburg, Viktor L. An embedding 𝑆²ⁿ⁻¹→𝑅²ⁿ, 2𝑛-1≥7, whose Hamiltonian flow has no periodic trajectories Internat. Math. Res. Notices 1995 83 97

[2] Ginzburg, Viktor L. A smooth counterexample to the Hamiltonian Seifert conjecture in 𝐑⁶ Internat. Math. Res. Notices 1997 641 650

[3] Ginzburg, Viktor L. Hamiltonian dynamical systems without periodic orbits 1999 35 48

[4] Hamiltonian systems with three or more degrees of freedom 1999

[5] Hofer, H., Zehnder, E. Periodic solutions on hypersurfaces and a result by C. Viterbo Invent. Math. 1987 1 9

[6] Hofer, Helmut, Zehnder, Eduard Symplectic invariants and Hamiltonian dynamics 1994

[7] Hu, Jun, Sullivan, Dennis P. Topological conjugacy of circle diffeomorphisms Ergodic Theory Dynam. Systems 1997 173 186

[8] Katok, Anatole, Hasselblatt, Boris Introduction to the modern theory of dynamical systems 1995

[9] Kuperberg, Greg A volume-preserving counterexample to the Seifert conjecture Comment. Math. Helv. 1996 70 97

[10] Kuperberg, Greg, Kuperberg, Krystyna Generalized counterexamples to the Seifert conjecture Ann. of Math. (2) 1996 547 576

[11] Kuperberg, Krystyna A smooth counterexample to the Seifert conjecture Ann. of Math. (2) 1994 723 732

[12] Kuperberg, Krystyna Counterexamples to the Seifert conjecture Doc. Math. 1998 831 840

[13] Kuperberg, Krystyna Aperiodic dynamical systems Notices Amer. Math. Soc. 1999 1035 1040

[14] Mcduff, Dusa, Salamon, Dietmar Introduction to symplectic topology 1995

[15] Schweitzer, Paul A. Counterexamples to the Seifert conjecture and opening closed leaves of foliations Ann. of Math. (2) 1974 386 400

[16] Struwe, Michael Existence of periodic solutions of Hamiltonian systems on almost every energy surface Bol. Soc. Brasil. Mat. (N.S.) 1990 49 58

[17] Wilson, F. Wesley, Jr. On the minimal sets of non-singular vector fields Ann. of Math. (2) 1966 529 536

Cité par Sources :