Voir la notice de l'article provenant de la source American Mathematical Society
Ginzburg, Viktor 1 ; Gürel, Başak 1
@article{ERAAMS_2002_08_a1, author = {Ginzburg, Viktor and G\"urel, Ba\c{s}ak}, title = {On the construction of a {\ensuremath{\mathit{C}}{\texttwosuperior}-counterexample} to the {Hamiltonian} {Seifert} {Conjecture} in {\ensuremath{\mathbb{R}}⁴}}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {11--19}, publisher = {mathdoc}, volume = {08}, year = {2002}, doi = {10.1090/S1079-6762-02-00100-2}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00100-2/} }
TY - JOUR AU - Ginzburg, Viktor AU - Gürel, Başak TI - On the construction of a 𝐶²-counterexample to the Hamiltonian Seifert Conjecture in ℝ⁴ JO - Electronic research announcements of the American Mathematical Society PY - 2002 SP - 11 EP - 19 VL - 08 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00100-2/ DO - 10.1090/S1079-6762-02-00100-2 ID - ERAAMS_2002_08_a1 ER -
%0 Journal Article %A Ginzburg, Viktor %A Gürel, Başak %T On the construction of a 𝐶²-counterexample to the Hamiltonian Seifert Conjecture in ℝ⁴ %J Electronic research announcements of the American Mathematical Society %D 2002 %P 11-19 %V 08 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00100-2/ %R 10.1090/S1079-6762-02-00100-2 %F ERAAMS_2002_08_a1
Ginzburg, Viktor; Gürel, Başak. On the construction of a 𝐶²-counterexample to the Hamiltonian Seifert Conjecture in ℝ⁴. Electronic research announcements of the American Mathematical Society, Tome 08 (2002), pp. 11-19. doi : 10.1090/S1079-6762-02-00100-2. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-02-00100-2/
[1] An embedding 𝑆²ⁿ⁻¹→𝑅²ⁿ, 2𝑛-1≥7, whose Hamiltonian flow has no periodic trajectories Internat. Math. Res. Notices 1995 83 97
[2] A smooth counterexample to the Hamiltonian Seifert conjecture in 𝐑⁶ Internat. Math. Res. Notices 1997 641 650
[3] Hamiltonian dynamical systems without periodic orbits 1999 35 48
[4] Hamiltonian systems with three or more degrees of freedom 1999
[5] Periodic solutions on hypersurfaces and a result by C. Viterbo Invent. Math. 1987 1 9
,[6] Symplectic invariants and Hamiltonian dynamics 1994
,[7] Topological conjugacy of circle diffeomorphisms Ergodic Theory Dynam. Systems 1997 173 186
,[8] Introduction to the modern theory of dynamical systems 1995
,[9] A volume-preserving counterexample to the Seifert conjecture Comment. Math. Helv. 1996 70 97
[10] Generalized counterexamples to the Seifert conjecture Ann. of Math. (2) 1996 547 576
,[11] A smooth counterexample to the Seifert conjecture Ann. of Math. (2) 1994 723 732
[12] Counterexamples to the Seifert conjecture Doc. Math. 1998 831 840
[13] Aperiodic dynamical systems Notices Amer. Math. Soc. 1999 1035 1040
[14] Introduction to symplectic topology 1995
,[15] Counterexamples to the Seifert conjecture and opening closed leaves of foliations Ann. of Math. (2) 1974 386 400
[16] Existence of periodic solutions of Hamiltonian systems on almost every energy surface Bol. Soc. Brasil. Mat. (N.S.) 1990 49 58
[17] On the minimal sets of non-singular vector fields Ann. of Math. (2) 1966 529 536
Cité par Sources :