On pairs of metrics invariant under a cocompact action of a group
Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 79-86
Cet article a éte moissonné depuis la source American Mathematical Society
Consider two intrinsic metrics invariant under the same cocompact action of an abelian group. Assume that the ratio of the distances tends to one as the distances grow to infinity. Then it is known (due to D. Burago) that the difference between the metric functions is uniformly bounded. We will prove an analog of this result for hyperbolic groups, as well as a partial generalization of this result for the Heisenberg group: a word metric on the Heisenberg group lies within bounded GH distance from its asymptotic cone.
@article{10_1090_S1079_6762_01_00097_X,
author = {Krat, S.},
title = {On pairs of metrics invariant under a cocompact action of a group},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {79--86},
year = {2001},
volume = {07},
doi = {10.1090/S1079-6762-01-00097-X},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00097-X/}
}
TY - JOUR AU - Krat, S. TI - On pairs of metrics invariant under a cocompact action of a group JO - Electronic research announcements of the American Mathematical Society PY - 2001 SP - 79 EP - 86 VL - 07 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00097-X/ DO - 10.1090/S1079-6762-01-00097-X ID - 10_1090_S1079_6762_01_00097_X ER -
%0 Journal Article %A Krat, S. %T On pairs of metrics invariant under a cocompact action of a group %J Electronic research announcements of the American Mathematical Society %D 2001 %P 79-86 %V 07 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00097-X/ %R 10.1090/S1079-6762-01-00097-X %F 10_1090_S1079_6762_01_00097_X
Krat, S. On pairs of metrics invariant under a cocompact action of a group. Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 79-86. doi: 10.1090/S1079-6762-01-00097-X
[1] Geodesics of the left-invariant nonholonomic Riemannian metric on the group of motions in the Euclidean plane Sibirsk. Mat. Zh. 1994
[2] Periodic metrics 1992 205 210
[3] Carnot-Carathéodory spaces seen from within 1996 79 323
[4] Asymptotic invariants of infinite groups 1993 1 295
[5] Structures métriques pour les variétés riemanniennes 1981
[6] Konvexe Mengen 1980 330
[7] Croissance des boules et des géodésiques fermées dans les nilvariétés Ergodic Theory Dynam. Systems 1983 415 445
Cité par Sources :