On pairs of metrics invariant under a cocompact action of a group
Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 79-86.

Voir la notice de l'article provenant de la source American Mathematical Society

Consider two intrinsic metrics invariant under the same cocompact action of an abelian group. Assume that the ratio of the distances tends to one as the distances grow to infinity. Then it is known (due to D. Burago) that the difference between the metric functions is uniformly bounded. We will prove an analog of this result for hyperbolic groups, as well as a partial generalization of this result for the Heisenberg group: a word metric on the Heisenberg group lies within bounded GH distance from its asymptotic cone.
DOI : 10.1090/S1079-6762-01-00097-X

Krat, S. 1

1 Department of Mathematics, The Pennsylvania State University, University Park, PA 16802
@article{ERAAMS_2001_07_a10,
     author = {Krat, S.},
     title = {On pairs of metrics invariant under a cocompact action of a group},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {79--86},
     publisher = {mathdoc},
     volume = {07},
     year = {2001},
     doi = {10.1090/S1079-6762-01-00097-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00097-X/}
}
TY  - JOUR
AU  - Krat, S.
TI  - On pairs of metrics invariant under a cocompact action of a group
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2001
SP  - 79
EP  - 86
VL  - 07
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00097-X/
DO  - 10.1090/S1079-6762-01-00097-X
ID  - ERAAMS_2001_07_a10
ER  - 
%0 Journal Article
%A Krat, S.
%T On pairs of metrics invariant under a cocompact action of a group
%J Electronic research announcements of the American Mathematical Society
%D 2001
%P 79-86
%V 07
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00097-X/
%R 10.1090/S1079-6762-01-00097-X
%F ERAAMS_2001_07_a10
Krat, S. On pairs of metrics invariant under a cocompact action of a group. Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 79-86. doi : 10.1090/S1079-6762-01-00097-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00097-X/

[1] Berestovskiĭ, V. N. Geodesics of the left-invariant nonholonomic Riemannian metric on the group of motions in the Euclidean plane Sibirsk. Mat. Zh. 1994

[2] Burago, D. Yu. Periodic metrics 1992 205 210

[3] Gromov, Mikhael Carnot-Carathéodory spaces seen from within 1996 79 323

[4] Gromov, M. Asymptotic invariants of infinite groups 1993 1 295

[5] Gromov, Mikhael Structures métriques pour les variétés riemanniennes 1981

[6] Leichtweiss, K. Konvexe Mengen 1980 330

[7] Pansu, Pierre Croissance des boules et des géodésiques fermées dans les nilvariétés Ergodic Theory Dynam. Systems 1983 415 445

Cité par Sources :