Voir la notice de l'article provenant de la source American Mathematical Society
Ol’shanskii, A. 1 ; Sapir, M. 2
@article{ERAAMS_2001_07_a8, author = {Ol{\textquoteright}shanskii, A. and Sapir, M.}, title = {Non-amenable finitely presented torsion-by-cyclic groups}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {63--71}, publisher = {mathdoc}, volume = {07}, year = {2001}, doi = {10.1090/S1079-6762-01-00095-6}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00095-6/} }
TY - JOUR AU - Ol’shanskii, A. AU - Sapir, M. TI - Non-amenable finitely presented torsion-by-cyclic groups JO - Electronic research announcements of the American Mathematical Society PY - 2001 SP - 63 EP - 71 VL - 07 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00095-6/ DO - 10.1090/S1079-6762-01-00095-6 ID - ERAAMS_2001_07_a8 ER -
%0 Journal Article %A Ol’shanskii, A. %A Sapir, M. %T Non-amenable finitely presented torsion-by-cyclic groups %J Electronic research announcements of the American Mathematical Society %D 2001 %P 63-71 %V 07 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00095-6/ %R 10.1090/S1079-6762-01-00095-6 %F ERAAMS_2001_07_a8
Ol’shanskii, A.; Sapir, M. Non-amenable finitely presented torsion-by-cyclic groups. Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 63-71. doi : 10.1090/S1079-6762-01-00095-6. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00095-6/
[1] Random walks on free periodic groups Izv. Akad. Nauk SSSR Ser. Mat. 1982
[2] Periodic products of groups Trudy Mat. Inst. Steklov. 1976
[3] Groups of piecewise linear homeomorphisms of the real line Invent. Math. 1985 485 498
,[4] Introductory notes on Richard Thompson’s groups Enseign. Math. (2) 1996 215 256
, ,[5] The algebraic theory of semigroups. Vol. I 1961
,[6] Cogrowth and amenability of discrete groups J. Funct. Anal. 1982 301 309
[7] Infinite number fields with Noether ideal theories Amer. J. Math. 1939 771 782
,[8] Open problems in infinite-dimensional topology Topology Proc. 1979
[9] Invariant means on topological groups and their applications 1969
[10] Symmetrical random walks on discrete groups 1980 285 325
[11] An example of a finitely presented amenable group that does not belong to the class EG Mat. Sb. 1998 79 100
[12] Hyperbolic groups and their quotients of bounded exponents Trans. Amer. Math. Soc. 1996 2091 2138
,[13] Full Banach mean values on countable groups Math. Scand. 1959 146 156
[14] Algorithmic problems in varieties Internat. J. Algebra Comput. 1995 379 602
,[15] Kourovskaya tetrad′ 1982 118
[16] Combinatorial group theory 1977
,[17] On an inequality of Marcel Riesz Ann. of Math. (2) 1939 567 574
[18] An infinite simple torsion-free Noetherian group Izv. Akad. Nauk SSSR Ser. Mat. 1979 1328 1393
[19] An infinite group with subgroups of prime orders Izv. Akad. Nauk SSSR Ser. Mat. 1980
[20] On the question of the existence of an invariant mean on a group Uspekhi Mat. Nauk 1980 199 200
[21] Geometriya opredelyayushchikh sootnosheniĭ v gruppakh 1989 448
[22] 𝑆𝑄-universality of hyperbolic groups Mat. Sb. 1995 119 132
[23] Zur Theorie der messbaren Gruppen Math. Z. 1960 325 366
[24] Free subgroups in linear groups J. Algebra 1972 250 270
Cité par Sources :