Non-amenable finitely presented torsion-by-cyclic groups
Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 63-71.

Voir la notice de l'article provenant de la source American Mathematical Society

We construct a finitely presented non-amenable group without free non-cyclic subgroups thus providing a finitely presented counterexample to von Neumann’s problem. Our group is an extension of a group of finite exponent $n\gg 1$ by a cyclic group, so it satisfies the identity $[x,y]^n=1$.
DOI : 10.1090/S1079-6762-01-00095-6

Ol’shanskii, A. 1 ; Sapir, M. 2

1 Department of Mathematics, Vanderbilt University, Nashville, TN 37240, and Department of Mechanics and Mathematics, Moscow State University, Moscow, Russia
2 Department of Mathematics, Vanderbilt University, Nashville, TN 37240
@article{ERAAMS_2001_07_a8,
     author = {Ol{\textquoteright}shanskii, A. and Sapir, M.},
     title = {Non-amenable finitely presented torsion-by-cyclic groups},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {63--71},
     publisher = {mathdoc},
     volume = {07},
     year = {2001},
     doi = {10.1090/S1079-6762-01-00095-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00095-6/}
}
TY  - JOUR
AU  - Ol’shanskii, A.
AU  - Sapir, M.
TI  - Non-amenable finitely presented torsion-by-cyclic groups
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2001
SP  - 63
EP  - 71
VL  - 07
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00095-6/
DO  - 10.1090/S1079-6762-01-00095-6
ID  - ERAAMS_2001_07_a8
ER  - 
%0 Journal Article
%A Ol’shanskii, A.
%A Sapir, M.
%T Non-amenable finitely presented torsion-by-cyclic groups
%J Electronic research announcements of the American Mathematical Society
%D 2001
%P 63-71
%V 07
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00095-6/
%R 10.1090/S1079-6762-01-00095-6
%F ERAAMS_2001_07_a8
Ol’shanskii, A.; Sapir, M. Non-amenable finitely presented torsion-by-cyclic groups. Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 63-71. doi : 10.1090/S1079-6762-01-00095-6. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00095-6/

[1] Adyan, S. I. Random walks on free periodic groups Izv. Akad. Nauk SSSR Ser. Mat. 1982

[2] Adjan, S. I. Periodic products of groups Trudy Mat. Inst. Steklov. 1976

[3] Brin, Matthew G., Squier, Craig C. Groups of piecewise linear homeomorphisms of the real line Invent. Math. 1985 485 498

[4] Cannon, J. W., Floyd, W. J., Parry, W. R. Introductory notes on Richard Thompson’s groups Enseign. Math. (2) 1996 215 256

[5] Clifford, A. H., Preston, G. B. The algebraic theory of semigroups. Vol. I 1961

[6] Cohen, Joel M. Cogrowth and amenability of discrete groups J. Funct. Anal. 1982 301 309

[7] Maclane, Saunders, Schilling, O. F. G. Infinite number fields with Noether ideal theories Amer. J. Math. 1939 771 782

[8] Open problems in infinite-dimensional topology Topology Proc. 1979

[9] Greenleaf, Frederick P. Invariant means on topological groups and their applications 1969

[10] Grigorchuk, R. I. Symmetrical random walks on discrete groups 1980 285 325

[11] Grigorchuk, R. I. An example of a finitely presented amenable group that does not belong to the class EG Mat. Sb. 1998 79 100

[12] Ivanov, S. V., Ol′Shanskiĭ, A. Yu. Hyperbolic groups and their quotients of bounded exponents Trans. Amer. Math. Soc. 1996 2091 2138

[13] Kesten, Harry Full Banach mean values on countable groups Math. Scand. 1959 146 156

[14] Kharlampovich, O. G., Sapir, M. V. Algorithmic problems in varieties Internat. J. Algebra Comput. 1995 379 602

[15] Kourovskaya tetrad′ 1982 118

[16] Lyndon, Roger C., Schupp, Paul E. Combinatorial group theory 1977

[17] Young, L. C. On an inequality of Marcel Riesz Ann. of Math. (2) 1939 567 574

[18] Ol′Šanskiĭ, A. Ju. An infinite simple torsion-free Noetherian group Izv. Akad. Nauk SSSR Ser. Mat. 1979 1328 1393

[19] Ol′Šanskiĭ, A. Ju. An infinite group with subgroups of prime orders Izv. Akad. Nauk SSSR Ser. Mat. 1980

[20] Ol′Šanskiĭ, A. Ju. On the question of the existence of an invariant mean on a group Uspekhi Mat. Nauk 1980 199 200

[21] Ol′Shanskiĭ, A. Yu. Geometriya opredelyayushchikh sootnosheniĭ v gruppakh 1989 448

[22] Ol′Shanskiĭ, A. Yu. 𝑆𝑄-universality of hyperbolic groups Mat. Sb. 1995 119 132

[23] Specht, Wilhelm Zur Theorie der messbaren Gruppen Math. Z. 1960 325 366

[24] Tits, J. Free subgroups in linear groups J. Algebra 1972 250 270

Cité par Sources :