Principal bundles with parabolic structure
Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 37-44.

Voir la notice de l'article provenant de la source American Mathematical Society

We define a principal bundle analog of vector bundles with parabolic structure over a normal crossing divisor. Various results on parabolic vector bundles and usual principal bundles are extended to the context of parabolic principal bundles.
DOI : 10.1090/S1079-6762-01-00092-0

Balaji, V. 1 ; Biswas, I. 2 ; Nagaraj, D. 1

1 Institute of Mathematical Sciences, C.I.T. Campus, Taramani Chennai 600113, India
2 School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
@article{ERAAMS_2001_07_a5,
     author = {Balaji, V. and Biswas, I. and Nagaraj, D.},
     title = {Principal bundles with parabolic structure},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {37--44},
     publisher = {mathdoc},
     volume = {07},
     year = {2001},
     doi = {10.1090/S1079-6762-01-00092-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00092-0/}
}
TY  - JOUR
AU  - Balaji, V.
AU  - Biswas, I.
AU  - Nagaraj, D.
TI  - Principal bundles with parabolic structure
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2001
SP  - 37
EP  - 44
VL  - 07
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00092-0/
DO  - 10.1090/S1079-6762-01-00092-0
ID  - ERAAMS_2001_07_a5
ER  - 
%0 Journal Article
%A Balaji, V.
%A Biswas, I.
%A Nagaraj, D.
%T Principal bundles with parabolic structure
%J Electronic research announcements of the American Mathematical Society
%D 2001
%P 37-44
%V 07
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00092-0/
%R 10.1090/S1079-6762-01-00092-0
%F ERAAMS_2001_07_a5
Balaji, V.; Biswas, I.; Nagaraj, D. Principal bundles with parabolic structure. Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 37-44. doi : 10.1090/S1079-6762-01-00092-0. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00092-0/

[1] Biswas, Indranil Parabolic ample bundles Math. Ann. 1997 511 529

[2] Biswas, Indranil Parabolic bundles as orbifold bundles Duke Math. J. 1997 305 325

[3] Biswas, Indranil Chern classes for parabolic bundles J. Math. Kyoto Univ. 1997 597 613

[4] Deligne, Pierre, Milne, James S., Ogus, Arthur, Shih, Kuang-Yen Hodge cycles, motives, and Shimura varieties 1982

[5] Kawamata, Yujiro, Matsuda, Katsumi, Matsuki, Kenji Introduction to the minimal model problem 1987 283 360

[6] Mehta, V. B., Seshadri, C. S. Moduli of vector bundles on curves with parabolic structures Math. Ann. 1980 205 239

[7] Maruyama, M., Yokogawa, K. Moduli of parabolic stable sheaves Math. Ann. 1992 77 99

[8] Nori, Madhav V. On the representations of the fundamental group Compositio Math. 1976 29 41

[9] Nori, Madhav V. The fundamental group-scheme Proc. Indian Acad. Sci. Math. Sci. 1982 73 122

[10] Ramanan, S., Ramanathan, A. Some remarks on the instability flag Tohoku Math. J. (2) 1984 269 291

[11] Yokogawa, Kôji Infinitesimal deformation of parabolic Higgs sheaves Internat. J. Math. 1995 125 148

Cité par Sources :