Voir la notice de l'article provenant de la source American Mathematical Society
Kaloshin, Vadim 1 ; Hunt, Brian 2
@article{ERAAMS_2001_07_a3, author = {Kaloshin, Vadim and Hunt, Brian}, title = {A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms {I}}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {17--27}, publisher = {mathdoc}, volume = {07}, year = {2001}, doi = {10.1090/S1079-6762-01-00090-7}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00090-7/} }
TY - JOUR AU - Kaloshin, Vadim AU - Hunt, Brian TI - A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms I JO - Electronic research announcements of the American Mathematical Society PY - 2001 SP - 17 EP - 27 VL - 07 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00090-7/ DO - 10.1090/S1079-6762-01-00090-7 ID - ERAAMS_2001_07_a3 ER -
%0 Journal Article %A Kaloshin, Vadim %A Hunt, Brian %T A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms I %J Electronic research announcements of the American Mathematical Society %D 2001 %P 17-27 %V 07 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00090-7/ %R 10.1090/S1079-6762-01-00090-7 %F ERAAMS_2001_07_a3
Kaloshin, Vadim; Hunt, Brian. A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms I. Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 17-27. doi : 10.1090/S1079-6762-01-00090-7. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00090-7/
[1] On periodic points Ann. of Math. (2) 1965 82 99
,[2] Persistence and smoothness of invariant manifolds for flows Indiana Univ. Math. J. 1971/72 193 226
[3] On models with nonrough Poincaré homoclinic curves Phys. D 1993 1 14
, ,[4] Topological proofs of uniqueness theorems in the theory of differential and integral equations Bull. Amer. Math. Soc. 1939 606 613
[5] An extension of the Artin-Mazur theorem Ann. of Math. (2) 1999 729 741
[6] Some prevalent properties of smooth dynamical systems Tr. Mat. Inst. Steklova 1997 123 151
[7] Julia-Fatou-Sullivan theory for real one-dimensional dynamics Acta Math. 1992 273 318
, ,[8] Geometric theory of dynamical systems 1982
,[9] Measure and category. A survey of the analogies between topological and measure spaces 1971
[10] A perturbation theorem for invariant manifolds and Hölder continuity J. Math. Mech. 1969 705 762
[11] Quasilinear elliptic equations and Fredholm manifolds Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1985
,[12] A quantitative version of the Kupka-Smale theorem Ergodic Theory Dynam. Systems 1985 449 472
Cité par Sources :