A one-box-shift morphism between Specht modules
Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 90-94.

Voir la notice de l'article provenant de la source American Mathematical Society

We give a formula for a morphism between Specht modules over $(\mathbf {Z}/m)\mathcal {S}_n$, where $n\geq 1$, and where the partition indexing the target Specht module arises from that indexing the source Specht module by a downwards shift of one box, $m$ being the box shift length. Our morphism can be reinterpreted integrally as an extension of order $m$ of the corresponding Specht lattices.
DOI : 10.1090/S1079-6762-00-00085-8

Künzer, Matthias 1

1 Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld
@article{ERAAMS_2000_06_a10,
     author = {K\"unzer, Matthias},
     title = {A one-box-shift morphism between {Specht} modules},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {90--94},
     publisher = {mathdoc},
     volume = {06},
     year = {2000},
     doi = {10.1090/S1079-6762-00-00085-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00085-8/}
}
TY  - JOUR
AU  - Künzer, Matthias
TI  - A one-box-shift morphism between Specht modules
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2000
SP  - 90
EP  - 94
VL  - 06
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00085-8/
DO  - 10.1090/S1079-6762-00-00085-8
ID  - ERAAMS_2000_06_a10
ER  - 
%0 Journal Article
%A Künzer, Matthias
%T A one-box-shift morphism between Specht modules
%J Electronic research announcements of the American Mathematical Society
%D 2000
%P 90-94
%V 06
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00085-8/
%R 10.1090/S1079-6762-00-00085-8
%F ERAAMS_2000_06_a10
Künzer, Matthias. A one-box-shift morphism between Specht modules. Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 90-94. doi : 10.1090/S1079-6762-00-00085-8. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00085-8/

[1] Carter, Roger W., Lusztig, George On the modular representations of the general linear and symmetric groups Math. Z. 1974 193 242

[2] Carter, R. W., Payne, M. T. J. On homomorphisms between Weyl modules and Specht modules Math. Proc. Cambridge Philos. Soc. 1980 419 425

[3] James, G. D. The representation theory of the symmetric groups 1978

Cité par Sources :