A one-box-shift morphism between Specht modules
Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 90-94
Cet article a éte moissonné depuis la source American Mathematical Society
We give a formula for a morphism between Specht modules over $(\mathbf {Z}/m)\mathcal {S}_n$, where $n\geq 1$, and where the partition indexing the target Specht module arises from that indexing the source Specht module by a downwards shift of one box, $m$ being the box shift length. Our morphism can be reinterpreted integrally as an extension of order $m$ of the corresponding Specht lattices.
@article{10_1090_S1079_6762_00_00085_8,
author = {K\"unzer, Matthias},
title = {A one-box-shift morphism between {Specht} modules},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {90--94},
year = {2000},
volume = {06},
doi = {10.1090/S1079-6762-00-00085-8},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00085-8/}
}
TY - JOUR AU - Künzer, Matthias TI - A one-box-shift morphism between Specht modules JO - Electronic research announcements of the American Mathematical Society PY - 2000 SP - 90 EP - 94 VL - 06 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00085-8/ DO - 10.1090/S1079-6762-00-00085-8 ID - 10_1090_S1079_6762_00_00085_8 ER -
%0 Journal Article %A Künzer, Matthias %T A one-box-shift morphism between Specht modules %J Electronic research announcements of the American Mathematical Society %D 2000 %P 90-94 %V 06 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00085-8/ %R 10.1090/S1079-6762-00-00085-8 %F 10_1090_S1079_6762_00_00085_8
Künzer, Matthias. A one-box-shift morphism between Specht modules. Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 90-94. doi: 10.1090/S1079-6762-00-00085-8
[1] , On the modular representations of the general linear and symmetric groups Math. Z. 1974 193 242
[2] , On homomorphisms between Weyl modules and Specht modules Math. Proc. Cambridge Philos. Soc. 1980 419 425
[3] The representation theory of the symmetric groups 1978
Cité par Sources :