Solitons on pseudo-Riemannian manifolds: stability and motion
Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 75-89.

Voir la notice de l'article provenant de la source American Mathematical Society

This is an announcement of results concerning a class of solitary wave solutions to semilinear wave equations. The solitary waves studied are solutions of the form $\phi (t,x)=e^{i\omega t}f_\omega (x)$ to semilinear wave equations such as $\Box \phi +m^2\phi =\beta (|\phi |)\phi$ on $\mathbb {R}^{1+n}$ and are called nontopological solitons. The first preprint provides a new modulational approach to proving the stability of nontopological solitons. This technique, which makes strong use of the inherent symplectic structure, provides explicit information on the time evolution of the various parameters of the soliton. In the second preprint a pseudo-Riemannian structure $\underline {g}$ is introduced onto $\mathbb {R}^{1+n}$ and the corresponding wave equation is studied. It is shown that under the rescaling $\underline {g}\to \epsilon ^{-2} \underline {g}$, with $\epsilon \to 0$, it is possible to construct solutions representing nontopological solitons concentrated along a time-like geodesic.
DOI : 10.1090/S1079-6762-00-00084-6

Stuart, David 1

1 Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 OWA, UK
@article{ERAAMS_2000_06_a9,
     author = {Stuart, David},
     title = {Solitons on {pseudo-Riemannian} manifolds: stability and motion},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {75--89},
     publisher = {mathdoc},
     volume = {06},
     year = {2000},
     doi = {10.1090/S1079-6762-00-00084-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00084-6/}
}
TY  - JOUR
AU  - Stuart, David
TI  - Solitons on pseudo-Riemannian manifolds: stability and motion
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2000
SP  - 75
EP  - 89
VL  - 06
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00084-6/
DO  - 10.1090/S1079-6762-00-00084-6
ID  - ERAAMS_2000_06_a9
ER  - 
%0 Journal Article
%A Stuart, David
%T Solitons on pseudo-Riemannian manifolds: stability and motion
%J Electronic research announcements of the American Mathematical Society
%D 2000
%P 75-89
%V 06
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00084-6/
%R 10.1090/S1079-6762-00-00084-6
%F ERAAMS_2000_06_a9
Stuart, David. Solitons on pseudo-Riemannian manifolds: stability and motion. Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 75-89. doi : 10.1090/S1079-6762-00-00084-6. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00084-6/

[1] Benjamin, T. B. The stability of solitary waves Proc. Roy. Soc. London Ser. A 1972 153 183

[2] Berestycki, H., Lions, P.-L., Peletier, L. A. An ODE approach to the existence of positive solutions for semilinear problems in 𝑅^{𝑁} Indiana Univ. Math. J. 1981 141 157

[3] Berestycki, H., Lions, P.-L. Nonlinear scalar field equations. I. Existence of a ground state Arch. Rational Mech. Anal. 1983 313 345

[4] Grillakis, Manoussos, Shatah, Jalal, Strauss, Walter Stability theory of solitary waves in the presence of symmetry. I J. Funct. Anal. 1987 160 197

[5] Grillakis, Manoussos, Shatah, Jalal, Strauss, Walter Stability theory of solitary waves in the presence of symmetry. II J. Funct. Anal. 1990 308 348

[6] Lee, T. D. Particle physics and introduction to field theory 1981

[7] Marsden, Jerrold E. Lectures on mechanics 1992

[8] Mcleod, Kevin Uniqueness of positive radial solutions of Δ𝑢+𝑓(𝑢) Trans. Amer. Math. Soc. 1993 495 505

[9] Misner, Charles W., Thorne, Kip S., Wheeler, John Archibald Gravitation 1973

[10] Shatah, Jalal Stable standing waves of nonlinear Klein-Gordon equations Comm. Math. Phys. 1983 313 327

[11] Strauss, Walter A. Existence of solitary waves in higher dimensions Comm. Math. Phys. 1977 149 162

[12] Strauss, Walter A. Nonlinear wave equations 1989

[13] Weinstein, Michael I. Nonlinear Schrödinger equations and sharp interpolation estimates Comm. Math. Phys. 1982/83 567 576

Cité par Sources :