On the connectedness of the space of initial data for the Einstein equations
Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 52-63.

Voir la notice de l'article provenant de la source American Mathematical Society

Is the space of initial data for the Einstein vacuum equations connected? As a partial answer to this question, we prove the following result: Let $\mathcal {M}$ be the space of asymptotically flat metrics of non-negative scalar curvature on $\mathbb {R}^3$ which admit a global foliation outside a point by $2$-spheres of positive mean and Gauss curvatures. Then $\mathcal {M}$ is connected.
DOI : 10.1090/S1079-6762-00-00081-0

Smith, Brian 1 ; Weinstein, Gilbert 1

1 University of Alabama at Birmingham, Birmingham, AL 35205
@article{ERAAMS_2000_06_a7,
     author = {Smith, Brian and Weinstein, Gilbert},
     title = {On the connectedness of the space of initial data for the {Einstein} equations},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {52--63},
     publisher = {mathdoc},
     volume = {06},
     year = {2000},
     doi = {10.1090/S1079-6762-00-00081-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00081-0/}
}
TY  - JOUR
AU  - Smith, Brian
AU  - Weinstein, Gilbert
TI  - On the connectedness of the space of initial data for the Einstein equations
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2000
SP  - 52
EP  - 63
VL  - 06
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00081-0/
DO  - 10.1090/S1079-6762-00-00081-0
ID  - ERAAMS_2000_06_a7
ER  - 
%0 Journal Article
%A Smith, Brian
%A Weinstein, Gilbert
%T On the connectedness of the space of initial data for the Einstein equations
%J Electronic research announcements of the American Mathematical Society
%D 2000
%P 52-63
%V 06
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00081-0/
%R 10.1090/S1079-6762-00-00081-0
%F ERAAMS_2000_06_a7
Smith, Brian; Weinstein, Gilbert. On the connectedness of the space of initial data for the Einstein equations. Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 52-63. doi : 10.1090/S1079-6762-00-00081-0. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00081-0/

[1] Bartnik, Robert Existence of maximal surfaces in asymptotically flat spacetimes Comm. Math. Phys. 1984 155 175

[2] Bartnik, Robert Quasi-spherical metrics and prescribed scalar curvature J. Differential Geom. 1993 31 71

[3] Cantor, Murray A necessary and sufficient condition for York data to specify an asymptotically flat spacetime J. Math. Phys. 1979 1741 1744

[4] Cantor, Murray, Brill, Dieter The Laplacian on asymptotically flat manifolds and the specification of scalar curvature Compositio Math. 1981 317 330

[5] Chaljub-Simon, Alice, Choquet-Bruhat, Yvonne Problèmes elliptiques du second ordre sur une variété euclidienne à l’infini Ann. Fac. Sci. Toulouse Math. (5) 1979 9 25

[6] Choquet-Bruhat, Yvonne Global solutions of the constraints equations on open and closed manifolds Gen. Relativity Gravitation 1974 49 60

[7] Christodoulou, Demetrios, Klainerman, Sergiu The global nonlinear stability of the Minkowski space 1993

[8] Christodoulou, D., Ó Murchadha, N. The boost problem in general relativity Comm. Math. Phys. 1981 271 300

[9] Fischer, Arthur E., Marsden, Jerrold E., Moncrief, Vincent The structure of the space of solutions of Einstein’s equations. I. One Killing field Ann. Inst. H. Poincaré Sect. A (N.S.) 1980 147 194

[10] Ladyženskaja, O. A., Solonnikov, V. A., Ural′Ceva, N. N. Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa 1967 736

[11] Lee, John M., Parker, Thomas H. The Yamabe problem Bull. Amer. Math. Soc. (N.S.) 1987 37 91

[12] Wald, Robert M. General relativity 1984

[13] York, James W., Jr. Gravitational degrees of freedom and the initial-value problem Phys. Rev. Lett. 1971 1656 1658

Cité par Sources :