Smith, Brian 1 ; Weinstein, Gilbert 1
@article{10_1090_S1079_6762_00_00081_0,
author = {Smith, Brian and Weinstein, Gilbert},
title = {On the connectedness of the space of initial data for the {Einstein} equations},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {52--63},
year = {2000},
volume = {06},
doi = {10.1090/S1079-6762-00-00081-0},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00081-0/}
}
TY - JOUR AU - Smith, Brian AU - Weinstein, Gilbert TI - On the connectedness of the space of initial data for the Einstein equations JO - Electronic research announcements of the American Mathematical Society PY - 2000 SP - 52 EP - 63 VL - 06 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00081-0/ DO - 10.1090/S1079-6762-00-00081-0 ID - 10_1090_S1079_6762_00_00081_0 ER -
%0 Journal Article %A Smith, Brian %A Weinstein, Gilbert %T On the connectedness of the space of initial data for the Einstein equations %J Electronic research announcements of the American Mathematical Society %D 2000 %P 52-63 %V 06 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00081-0/ %R 10.1090/S1079-6762-00-00081-0 %F 10_1090_S1079_6762_00_00081_0
Smith, Brian; Weinstein, Gilbert. On the connectedness of the space of initial data for the Einstein equations. Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 52-63. doi: 10.1090/S1079-6762-00-00081-0
[1] Existence of maximal surfaces in asymptotically flat spacetimes Comm. Math. Phys. 1984 155 175
[2] Quasi-spherical metrics and prescribed scalar curvature J. Differential Geom. 1993 31 71
[3] A necessary and sufficient condition for York data to specify an asymptotically flat spacetime J. Math. Phys. 1979 1741 1744
[4] , The Laplacian on asymptotically flat manifolds and the specification of scalar curvature Compositio Math. 1981 317 330
[5] , Problèmes elliptiques du second ordre sur une variété euclidienne à l’infini Ann. Fac. Sci. Toulouse Math. (5) 1979 9 25
[6] Global solutions of the constraints equations on open and closed manifolds Gen. Relativity Gravitation 1974 49 60
[7] , The global nonlinear stability of the Minkowski space 1993
[8] , The boost problem in general relativity Comm. Math. Phys. 1981 271 300
[9] , , The structure of the space of solutions of Einstein’s equations. I. One Killing field Ann. Inst. H. Poincaré Sect. A (N.S.) 1980 147 194
[10] , , Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa 1967 736
[11] , The Yamabe problem Bull. Amer. Math. Soc. (N.S.) 1987 37 91
[12] General relativity 1984
[13] Gravitational degrees of freedom and the initial-value problem Phys. Rev. Lett. 1971 1656 1658
Cité par Sources :