Hutchings, Michael 1 ; Morgan, Frank 2 ; Ritoré, Manuel 3 ; Ros, Antonio 3
@article{10_1090_S1079_6762_00_00079_2,
author = {Hutchings, Michael and Morgan, Frank and Ritor\'e, Manuel and Ros, Antonio},
title = {Proof of the double bubble conjecture},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {45--49},
year = {2000},
volume = {06},
doi = {10.1090/S1079-6762-00-00079-2},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00079-2/}
}
TY - JOUR AU - Hutchings, Michael AU - Morgan, Frank AU - Ritoré, Manuel AU - Ros, Antonio TI - Proof of the double bubble conjecture JO - Electronic research announcements of the American Mathematical Society PY - 2000 SP - 45 EP - 49 VL - 06 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00079-2/ DO - 10.1090/S1079-6762-00-00079-2 ID - 10_1090_S1079_6762_00_00079_2 ER -
%0 Journal Article %A Hutchings, Michael %A Morgan, Frank %A Ritoré, Manuel %A Ros, Antonio %T Proof of the double bubble conjecture %J Electronic research announcements of the American Mathematical Society %D 2000 %P 45-49 %V 06 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00079-2/ %R 10.1090/S1079-6762-00-00079-2 %F 10_1090_S1079_6762_00_00079_2
Hutchings, Michael; Morgan, Frank; Ritoré, Manuel; Ros, Antonio. Proof of the double bubble conjecture. Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 45-49. doi: 10.1090/S1079-6762-00-00079-2
[1] Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints Mem. Amer. Math. Soc. 1976
[2] On Frobeniusean algebras. I Ann. of Math. (2) 1939 611 633
[3] , , , , The standard double soap bubble in 𝑅² uniquely minimizes perimeter Pacific J. Math. 1993 47 59
[4] , , The double bubble conjecture Electron. Res. Announc. Amer. Math. Soc. 1995 98 102
[5] The structure of area-minimizing double bubbles J. Geom. Anal. 1997 285 304
[6] The ancient tradition of geometric problems 1986
[7] Geometric measure theory 1995
[8] , Stable constant mean curvature tori and the isoperimetric problem in three space forms Comment. Math. Helv. 1992 293 305
[9] , On stability of capillary surfaces in a ball Pacific J. Math. 1997 345 361
[10] , Stability for hypersurfaces of constant mean curvature with free boundary Geom. Dedicata 1995 19 33
[11] The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces Ann. of Math. (2) 1976 489 539
Cité par Sources :