On spaces with periodic cohomology
Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 1-6
Cet article a éte moissonné depuis la source American Mathematical Society
We define a generalized notion of cohomological periodicity for a connected CW-complex $X$, and show that it is equivalent to the existence of an oriented spherical fibration over $X$ with total space homotopy equivalent to a finite dimensional complex. As applications we characterize discrete groups which can act freely and properly on some $\mathbb R^n\times \mathbb S^m$, show that every rank two $p$-group acts freely on a homotopy product of two spheres and construct exotic free actions of many simple groups on such spaces.
Affiliations des auteurs :
Adem, Alejandro 1 ; Smith, Jeff 2
@article{10_1090_S1079_6762_00_00074_3,
author = {Adem, Alejandro and Smith, Jeff},
title = {On spaces with periodic cohomology},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {1--6},
year = {2000},
volume = {06},
doi = {10.1090/S1079-6762-00-00074-3},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00074-3/}
}
TY - JOUR AU - Adem, Alejandro AU - Smith, Jeff TI - On spaces with periodic cohomology JO - Electronic research announcements of the American Mathematical Society PY - 2000 SP - 1 EP - 6 VL - 06 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00074-3/ DO - 10.1090/S1079-6762-00-00074-3 ID - 10_1090_S1079_6762_00_00074_3 ER -
%0 Journal Article %A Adem, Alejandro %A Smith, Jeff %T On spaces with periodic cohomology %J Electronic research announcements of the American Mathematical Society %D 2000 %P 1-6 %V 06 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00074-3/ %R 10.1090/S1079-6762-00-00074-3 %F 10_1090_S1079_6762_00_00074_3
Adem, Alejandro; Smith, Jeff. On spaces with periodic cohomology. Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 1-6. doi: 10.1090/S1079-6762-00-00074-3
[1] , Groups which act freely on 𝑅^{𝑚}×𝑆ⁿ⁻¹ Topology 1989 133 148
[2] The classification of finite simple groups. Vol. 1 1983
[3] Free compact group actions on products of spheres 1979 539 548
[4] Periodic resolutions for finite groups Ann. of Math. (2) 1960 267 291
[5] Finiteness conditions for 𝐶𝑊 complexes. II Proc. Roy. Soc. London Ser. A 1966 129 139
[6] Periodic projective resolutions Proc. London Math. Soc. (3) 1979 509 553
Cité par Sources :