On spaces with periodic cohomology
Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 1-6.

Voir la notice de l'article provenant de la source American Mathematical Society

We define a generalized notion of cohomological periodicity for a connected CW-complex $X$, and show that it is equivalent to the existence of an oriented spherical fibration over $X$ with total space homotopy equivalent to a finite dimensional complex. As applications we characterize discrete groups which can act freely and properly on some $\mathbb R^n\times \mathbb S^m$, show that every rank two $p$-group acts freely on a homotopy product of two spheres and construct exotic free actions of many simple groups on such spaces.
DOI : 10.1090/S1079-6762-00-00074-3

Adem, Alejandro 1 ; Smith, Jeff 2

1 Mathematics Department, University of Wisconsin, Madison, Wisconsin 53706
2 Mathematics Department, Purdue University, West Lafayette, Indiana 47907
@article{ERAAMS_2000_06_a0,
     author = {Adem, Alejandro and Smith, Jeff},
     title = {On spaces with periodic cohomology},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {06},
     year = {2000},
     doi = {10.1090/S1079-6762-00-00074-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00074-3/}
}
TY  - JOUR
AU  - Adem, Alejandro
AU  - Smith, Jeff
TI  - On spaces with periodic cohomology
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2000
SP  - 1
EP  - 6
VL  - 06
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00074-3/
DO  - 10.1090/S1079-6762-00-00074-3
ID  - ERAAMS_2000_06_a0
ER  - 
%0 Journal Article
%A Adem, Alejandro
%A Smith, Jeff
%T On spaces with periodic cohomology
%J Electronic research announcements of the American Mathematical Society
%D 2000
%P 1-6
%V 06
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00074-3/
%R 10.1090/S1079-6762-00-00074-3
%F ERAAMS_2000_06_a0
Adem, Alejandro; Smith, Jeff. On spaces with periodic cohomology. Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 1-6. doi : 10.1090/S1079-6762-00-00074-3. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00074-3/

[1] Connolly, Francis X., Prassidis, Stratos Groups which act freely on 𝑅^{𝑚}×𝑆ⁿ⁻¹ Topology 1989 133 148

[2] Gorenstein, Daniel The classification of finite simple groups. Vol. 1 1983

[3] Oliver, Robert Free compact group actions on products of spheres 1979 539 548

[4] Swan, Richard G. Periodic resolutions for finite groups Ann. of Math. (2) 1960 267 291

[5] Wall, C. T. C. Finiteness conditions for 𝐶𝑊 complexes. II Proc. Roy. Soc. London Ser. A 1966 129 139

[6] Wall, C. T. C. Periodic projective resolutions Proc. London Math. Soc. (3) 1979 509 553

Cité par Sources :