Rognes, J. 1 ; Weibel, C. 2 ; M. Kolster, appendix by 3
@article{10_1090_S0894_0347_99_00317_3,
author = {Rognes, J. and Weibel, C. and M. Kolster, appendix by},
title = {Two-primary algebraic {\ensuremath{\mathit{K}}-theory} of rings of integers in number fields},
journal = {Journal of the American Mathematical Society},
pages = {1--54},
year = {2000},
volume = {13},
number = {1},
doi = {10.1090/S0894-0347-99-00317-3},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00317-3/}
}
TY - JOUR AU - Rognes, J. AU - Weibel, C. AU - M. Kolster, appendix by TI - Two-primary algebraic 𝐾-theory of rings of integers in number fields JO - Journal of the American Mathematical Society PY - 2000 SP - 1 EP - 54 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00317-3/ DO - 10.1090/S0894-0347-99-00317-3 ID - 10_1090_S0894_0347_99_00317_3 ER -
%0 Journal Article %A Rognes, J. %A Weibel, C. %A M. Kolster, appendix by %T Two-primary algebraic 𝐾-theory of rings of integers in number fields %J Journal of the American Mathematical Society %D 2000 %P 1-54 %V 13 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00317-3/ %R 10.1090/S0894-0347-99-00317-3 %F 10_1090_S0894_0347_99_00317_3
Rognes, J.; Weibel, C.; M. Kolster, appendix by. Two-primary algebraic 𝐾-theory of rings of integers in number fields. Journal of the American Mathematical Society, Tome 13 (2000) no. 1, pp. 1-54. doi: 10.1090/S0894-0347-99-00317-3
[1] 𝑝-adic 𝐿-functions and Iwasawa’s theory 1977 269 353
[2] , Values of abelian 𝐿-functions at negative integers over totally real fields Invent. Math. 1980 227 286
[3] Number theory related to Fermat’s last theorem 1982
[4] On 𝑝-adic 𝐿-functions and cyclotomic fields Nagoya Math. J. 1975 61 77
[5] On 𝑝-adic 𝐿-functions and cyclotomic fields. II Nagoya Math. J. 1977 139 158
[6] On 𝑝-adic Artin 𝐿-functions Nagoya Math. J. 1983 77 87
[7] Class groups of abelian fields, and the main conjecture Ann. Inst. Fourier (Grenoble) 1992 449 499
[8] Lectures on 𝑝-adic 𝐿-functions 1972
[9] On 𝑍_{𝑙}-extensions of algebraic number fields Ann. of Math. (2) 1973 246 326
[10] A relation between the 2-primary parts of the main conjecture and the Birch-Tate-conjecture Canad. Math. Bull. 1989 248 251
[11] , , Twisted 𝑆-units, 𝑝-adic class number formulas, and the Lichtenbaum conjectures Duke Math. J. 1996 679 717
[12] On the values of zeta and 𝐿-functions. I Ann. of Math. (2) 1972 338 360
[13] , Class fields of abelian extensions of 𝑄 Invent. Math. 1984 179 330
[14] Une étude cohomologique de la partie 2-primaire de 𝐾₂𝒪 𝐾-Theory 1990 523 542
[15] Introduction to cyclotomic fields 1982
[16] The Iwasawa conjecture for totally real fields Ann. of Math. (2) 1990 493 540
[17] Galois cohomology of algebraic number fields 1978 145
[18] On the groups 𝐽(𝑋). IV Topology 1966 21 71
[19] Algebraic cycles and higher 𝐾-theory Adv. in Math. 1986 267 304
[20] Stable real cohomology of arithmetic groups Ann. Sci. École Norm. Sup. (4) 1974
[21] Algebraic number theory 1967
[22] , Algebraic and etale 𝐾-theory Trans. Amer. Math. Soc. 1985 247 280
[23] 𝐾-theory of Henselian local rings and Henselian pairs 1992 59 70
[24] Class groups of abelian fields, and the main conjecture Ann. Inst. Fourier (Grenoble) 1992 449 499
[25] , 𝐾ᵢ groups of rings of algebraic integers Ann. of Math. (2) 1975 20 33
[26] When is 𝐵𝑟(𝑋) 1982 231 244
[27] Continuous étale cohomology Math. Ann. 1988 207 245
[28] Some conjectures on the algebraic 𝐾-theory of fields. I. 𝐾-theory with coefficients and étale 𝐾-theory 1989 117 176
[29] On the values of zeta and 𝐿-functions. I Ann. of Math. (2) 1972 338 360
[30] Values of zeta-functions, étale cohomology, and algebraic 𝐾-theory 1973 489 501
[31] Étale cohomology 1980
[32] Arithmetic duality theorems 1986
[33] , Homology of the general linear group over a local ring, and Milnor’s 𝐾-theory Izv. Akad. Nauk SSSR Ser. Mat. 1989 121 146
[34] Class field theory 1986
[35] The Hurewicz theorem and 𝐾-theory of complete discrete valuation rings Izv. Akad. Nauk SSSR Ser. Mat. 1986
[36] On the cohomology and 𝐾-theory of the general linear groups over a finite field Ann. of Math. (2) 1972 552 586
[37] Higher algebraic 𝐾-theory. I 1973 85 147
[38] Finite generation of the groups 𝐾ᵢ of rings of algebraic integers 1973 179 198
[39] Higher algebraic 𝐾-theory 1975 171 176
[40] Letter from Quillen to Milnor on 𝐼𝑚(𝜋ᵢ𝑂→𝜋ᵢ^{𝑠}→𝐾ᵢ𝑍) 1976 182 188
[41] Über gewisse Galoiscohomologiegruppen Math. Z. 1979 181 205
[42] Local fields 1979
[43] 𝐾-théorie des anneaux d’entiers de corps de nombres et cohomologie étale Invent. Math. 1979 251 295
[44] On the 𝐾-theory of algebraically closed fields Invent. Math. 1983 241 245
[45] Algebraic 𝐾-theory and motivic cohomology 1995 342 351
[46] Duality theorems in Galois cohomology over number fields 1963 288 295
[47] Continuous cohomology and 𝑝-adic 𝐾-theory 1976 241 248
[48] Introduction to cyclotomic fields 1982
[49] Étale Chern classes at the prime 2 1993 249 286
[50] An introduction to homological algebra 1994
[51] The 2-torsion in the 𝐾-theory of the integers C. R. Acad. Sci. Paris Sér. I Math. 1997 615 620
[52] The Iwasawa conjecture for totally real fields Ann. of Math. (2) 1990 493 540
Cité par Sources :