Voir la notice de l'article provenant de la source American Mathematical Society
Rognes, J. 1 ; Weibel, C. 2 ; M. Kolster, appendix by 3
@article{10_1090_S0894_0347_99_00317_3,
     author = {Rognes, J. and Weibel, C. and M. Kolster, appendix by},
     title = {Two-primary algebraic {\dh}{\textthreequarters}-theory of rings of integers in number fields},
     journal = {Journal of the American Mathematical Society},
     pages = {1--54},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2000},
     doi = {10.1090/S0894-0347-99-00317-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00317-3/}
}
                      
                      
                    TY - JOUR AU - Rognes, J. AU - Weibel, C. AU - M. Kolster, appendix by TI - Two-primary algebraic ð¾-theory of rings of integers in number fields JO - Journal of the American Mathematical Society PY - 2000 SP - 1 EP - 54 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00317-3/ DO - 10.1090/S0894-0347-99-00317-3 ID - 10_1090_S0894_0347_99_00317_3 ER -
%0 Journal Article %A Rognes, J. %A Weibel, C. %A M. Kolster, appendix by %T Two-primary algebraic ð¾-theory of rings of integers in number fields %J Journal of the American Mathematical Society %D 2000 %P 1-54 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00317-3/ %R 10.1090/S0894-0347-99-00317-3 %F 10_1090_S0894_0347_99_00317_3
Rognes, J.; Weibel, C.; M. Kolster, appendix by. Two-primary algebraic ð¾-theory of rings of integers in number fields. Journal of the American Mathematical Society, Tome 13 (2000) no. 1, pp. 1-54. doi: 10.1090/S0894-0347-99-00317-3
[1] ð-adic ð¿-functions and Iwasawaâs theory 1977 269 353
[2] , Values of abelian ð¿-functions at negative integers over totally real fields Invent. Math. 1980 227 286
[3] Number theory related to Fermatâs last theorem 1982
[4] On ð-adic ð¿-functions and cyclotomic fields Nagoya Math. J. 1975 61 77
[5] On ð-adic ð¿-functions and cyclotomic fields. II Nagoya Math. J. 1977 139 158
[6] On ð-adic Artin ð¿-functions Nagoya Math. J. 1983 77 87
[7] Class groups of abelian fields, and the main conjecture Ann. Inst. Fourier (Grenoble) 1992 449 499
[8] Lectures on ð-adic ð¿-functions 1972
[9] On ð_{ð}-extensions of algebraic number fields Ann. of Math. (2) 1973 246 326
[10] A relation between the 2-primary parts of the main conjecture and the Birch-Tate-conjecture Canad. Math. Bull. 1989 248 251
[11] , , Twisted ð-units, ð-adic class number formulas, and the Lichtenbaum conjectures Duke Math. J. 1996 679 717
[12] On the values of zeta and ð¿-functions. I Ann. of Math. (2) 1972 338 360
[13] , Class fields of abelian extensions of ð Invent. Math. 1984 179 330
[14] Une étude cohomologique de la partie 2-primaire de ð¾âðª ð¾-Theory 1990 523 542
[15] Introduction to cyclotomic fields 1982
[16] The Iwasawa conjecture for totally real fields Ann. of Math. (2) 1990 493 540
[17] Galois cohomology of algebraic number fields 1978 145
[18] On the groups ð½(ð). IV Topology 1966 21 71
[19] Algebraic cycles and higher ð¾-theory Adv. in Math. 1986 267 304
[20] Stable real cohomology of arithmetic groups Ann. Sci. Ãcole Norm. Sup. (4) 1974
[21] Algebraic number theory 1967
[22] , Algebraic and etale ð¾-theory Trans. Amer. Math. Soc. 1985 247 280
[23] ð¾-theory of Henselian local rings and Henselian pairs 1992 59 70
[24] Class groups of abelian fields, and the main conjecture Ann. Inst. Fourier (Grenoble) 1992 449 499
[25] , ð¾áµ¢ groups of rings of algebraic integers Ann. of Math. (2) 1975 20 33
[26] When is ðµð(ð) 1982 231 244
[27] Continuous étale cohomology Math. Ann. 1988 207 245
[28] Some conjectures on the algebraic ð¾-theory of fields. I. ð¾-theory with coefficients and étale ð¾-theory 1989 117 176
[29] On the values of zeta and ð¿-functions. I Ann. of Math. (2) 1972 338 360
[30] Values of zeta-functions, étale cohomology, and algebraic ð¾-theory 1973 489 501
[31] Ãtale cohomology 1980
[32] Arithmetic duality theorems 1986
[33] , Homology of the general linear group over a local ring, and Milnorâs ð¾-theory Izv. Akad. Nauk SSSR Ser. Mat. 1989 121 146
[34] Class field theory 1986
[35] The Hurewicz theorem and ð¾-theory of complete discrete valuation rings Izv. Akad. Nauk SSSR Ser. Mat. 1986
[36] On the cohomology and ð¾-theory of the general linear groups over a finite field Ann. of Math. (2) 1972 552 586
[37] Higher algebraic ð¾-theory. I 1973 85 147
[38] Finite generation of the groups ð¾áµ¢ of rings of algebraic integers 1973 179 198
[39] Higher algebraic ð¾-theory 1975 171 176
[40] Letter from Quillen to Milnor on ð¼ð(ðáµ¢ðâðáµ¢^{ð }âð¾áµ¢ð) 1976 182 188
[41] Ãber gewisse Galoiscohomologiegruppen Math. Z. 1979 181 205
[42] Local fields 1979
[43] ð¾-théorie des anneaux dâentiers de corps de nombres et cohomologie étale Invent. Math. 1979 251 295
[44] On the ð¾-theory of algebraically closed fields Invent. Math. 1983 241 245
[45] Algebraic ð¾-theory and motivic cohomology 1995 342 351
[46] Duality theorems in Galois cohomology over number fields 1963 288 295
[47] Continuous cohomology and ð-adic ð¾-theory 1976 241 248
[48] Introduction to cyclotomic fields 1982
[49] Ãtale Chern classes at the prime 2 1993 249 286
[50] An introduction to homological algebra 1994
[51] The 2-torsion in the ð¾-theory of the integers C. R. Acad. Sci. Paris Sér. I Math. 1997 615 620
[52] The Iwasawa conjecture for totally real fields Ann. of Math. (2) 1990 493 540
Cité par Sources :
