Two-primary algebraic 𝐾-theory of rings of integers in number fields
Journal of the American Mathematical Society, Tome 13 (2000) no. 1, pp. 1-54

Voir la notice de l'article provenant de la source American Mathematical Society

We relate the algebraic $K$-theory of the ring of integers in a number field $F$ to its étale cohomology. We also relate it to the zeta-function of $F$ when $F$ is totally real and Abelian. This establishes the $2$-primary part of the “Lichtenbaum conjectures.” To do this we compute the $2$-primary $K$-groups of $F$ and of its ring of integers, using recent results of Voevodsky and the Bloch–Lichtenbaum spectral sequence, modified for finite coefficients in an appendix. A second appendix, by M. Kolster, explains the connection to the zeta-function and Iwasawa theory.
DOI : 10.1090/S0894-0347-99-00317-3

Rognes, J. 1 ; Weibel, C. 2 ; M. Kolster, appendix by 3

1 Department of Mathematics, University of Oslo, Oslo, Norway
2 Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903-2101
3 Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1
@article{10_1090_S0894_0347_99_00317_3,
     author = {Rognes, J. and Weibel, C. and M. Kolster, appendix by},
     title = {Two-primary algebraic {\dh}{\textthreequarters}-theory of rings of integers in number fields},
     journal = {Journal of the American Mathematical Society},
     pages = {1--54},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2000},
     doi = {10.1090/S0894-0347-99-00317-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00317-3/}
}
TY  - JOUR
AU  - Rognes, J.
AU  - Weibel, C.
AU  - M. Kolster, appendix by
TI  - Two-primary algebraic 𝐾-theory of rings of integers in number fields
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 1
EP  - 54
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00317-3/
DO  - 10.1090/S0894-0347-99-00317-3
ID  - 10_1090_S0894_0347_99_00317_3
ER  - 
%0 Journal Article
%A Rognes, J.
%A Weibel, C.
%A M. Kolster, appendix by
%T Two-primary algebraic 𝐾-theory of rings of integers in number fields
%J Journal of the American Mathematical Society
%D 2000
%P 1-54
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00317-3/
%R 10.1090/S0894-0347-99-00317-3
%F 10_1090_S0894_0347_99_00317_3
Rognes, J.; Weibel, C.; M. Kolster, appendix by. Two-primary algebraic 𝐾-theory of rings of integers in number fields. Journal of the American Mathematical Society, Tome 13 (2000) no. 1, pp. 1-54. doi: 10.1090/S0894-0347-99-00317-3

[1] Coates, John 𝑝-adic 𝐿-functions and Iwasawa’s theory 1977 269 353

[2] Deligne, Pierre, Ribet, Kenneth A. Values of abelian 𝐿-functions at negative integers over totally real fields Invent. Math. 1980 227 286

[3] Number theory related to Fermat’s last theorem 1982

[4] Greenberg, Ralph On 𝑝-adic 𝐿-functions and cyclotomic fields Nagoya Math. J. 1975 61 77

[5] Greenberg, Ralph On 𝑝-adic 𝐿-functions and cyclotomic fields. II Nagoya Math. J. 1977 139 158

[6] Greenberg, Ralph On 𝑝-adic Artin 𝐿-functions Nagoya Math. J. 1983 77 87

[7] Greither, Cornelius Class groups of abelian fields, and the main conjecture Ann. Inst. Fourier (Grenoble) 1992 449 499

[8] Iwasawa, Kenkichi Lectures on 𝑝-adic 𝐿-functions 1972

[9] Iwasawa, Kenkichi On 𝑍_{𝑙}-extensions of algebraic number fields Ann. of Math. (2) 1973 246 326

[10] Kolster, Manfred A relation between the 2-primary parts of the main conjecture and the Birch-Tate-conjecture Canad. Math. Bull. 1989 248 251

[11] Kolster, Manfred, Nguyen Quang Do, Thong, Fleckinger, Vincent Twisted 𝑆-units, 𝑝-adic class number formulas, and the Lichtenbaum conjectures Duke Math. J. 1996 679 717

[12] Lichtenbaum, Stephen On the values of zeta and 𝐿-functions. I Ann. of Math. (2) 1972 338 360

[13] Mazur, B., Wiles, A. Class fields of abelian extensions of 𝑄 Invent. Math. 1984 179 330

[14] NguyễN-Quang-ĐÁ»—, ThốNg Une étude cohomologique de la partie 2-primaire de 𝐾₂𝒪 𝐾-Theory 1990 523 542

[15] Washington, Lawrence C. Introduction to cyclotomic fields 1982

[16] Wiles, A. The Iwasawa conjecture for totally real fields Ann. of Math. (2) 1990 493 540

[17] Haberland, Klaus Galois cohomology of algebraic number fields 1978 145

[18] Adams, J. F. On the groups 𝐽(𝑋). IV Topology 1966 21 71

[19] Bloch, Spencer Algebraic cycles and higher 𝐾-theory Adv. in Math. 1986 267 304

[20] Borel, Armand Stable real cohomology of arithmetic groups Ann. Sci. École Norm. Sup. (4) 1974

[21] Algebraic number theory 1967

[22] Dwyer, William G., Friedlander, Eric M. Algebraic and etale 𝐾-theory Trans. Amer. Math. Soc. 1985 247 280

[23] Gabber, Ofer 𝐾-theory of Henselian local rings and Henselian pairs 1992 59 70

[24] Greither, Cornelius Class groups of abelian fields, and the main conjecture Ann. Inst. Fourier (Grenoble) 1992 449 499

[25] Harris, B., Segal, G. 𝐾ᵢ groups of rings of algebraic integers Ann. of Math. (2) 1975 20 33

[26] Hoobler, Raymond T. When is 𝐵𝑟(𝑋) 1982 231 244

[27] Jannsen, Uwe Continuous étale cohomology Math. Ann. 1988 207 245

[28] Kahn, Bruno Some conjectures on the algebraic 𝐾-theory of fields. I. 𝐾-theory with coefficients and étale 𝐾-theory 1989 117 176

[29] Lichtenbaum, Stephen On the values of zeta and 𝐿-functions. I Ann. of Math. (2) 1972 338 360

[30] Lichtenbaum, Stephen Values of zeta-functions, étale cohomology, and algebraic 𝐾-theory 1973 489 501

[31] Milne, James S. Étale cohomology 1980

[32] Milne, J. S. Arithmetic duality theorems 1986

[33] Nesterenko, Yu. P., Suslin, A. A. Homology of the general linear group over a local ring, and Milnor’s 𝐾-theory Izv. Akad. Nauk SSSR Ser. Mat. 1989 121 146

[34] Neukirch, Jã¼Rgen Class field theory 1986

[35] Panin, I. A. The Hurewicz theorem and 𝐾-theory of complete discrete valuation rings Izv. Akad. Nauk SSSR Ser. Mat. 1986

[36] Quillen, Daniel On the cohomology and 𝐾-theory of the general linear groups over a finite field Ann. of Math. (2) 1972 552 586

[37] Quillen, Daniel Higher algebraic 𝐾-theory. I 1973 85 147

[38] Quillen, Daniel Finite generation of the groups 𝐾ᵢ of rings of algebraic integers 1973 179 198

[39] Quillen, Daniel Higher algebraic 𝐾-theory 1975 171 176

[40] Quillen, D. Letter from Quillen to Milnor on 𝐼𝑚(𝜋ᵢ𝑂→𝜋ᵢ^{𝑠}→𝐾ᵢ𝑍) 1976 182 188

[41] Schneider, Peter Über gewisse Galoiscohomologiegruppen Math. Z. 1979 181 205

[42] Serre, Jean-Pierre Local fields 1979

[43] Soulã©, C. 𝐾-théorie des anneaux d’entiers de corps de nombres et cohomologie étale Invent. Math. 1979 251 295

[44] Suslin, A. On the 𝐾-theory of algebraically closed fields Invent. Math. 1983 241 245

[45] Suslin, Andrei Algebraic 𝐾-theory and motivic cohomology 1995 342 351

[46] Tate, John Duality theorems in Galois cohomology over number fields 1963 288 295

[47] Wagoner, J. B. Continuous cohomology and 𝑝-adic 𝐾-theory 1976 241 248

[48] Washington, Lawrence C. Introduction to cyclotomic fields 1982

[49] Weibel, Charles Étale Chern classes at the prime 2 1993 249 286

[50] Weibel, Charles A. An introduction to homological algebra 1994

[51] Weibel, Charles The 2-torsion in the 𝐾-theory of the integers C. R. Acad. Sci. Paris Sér. I Math. 1997 615 620

[52] Wiles, A. The Iwasawa conjecture for totally real fields Ann. of Math. (2) 1990 493 540

Cité par Sources :