Combinatorial Laplacians of matroid complexes
Journal of the American Mathematical Society, Tome 13 (2000) no. 1, pp. 129-148

Voir la notice de l'article provenant de la source American Mathematical Society

We combinatorially interpret the spectra of discrete Laplace operators from the boundary maps in the simplicial complex of independent sets of a matroid. The interpretation follows from a surprising orthogonal decomposition of the simplicial chain groups. This decomposition is in general finer than the spectral decomposition. As a consequence, the spectra are integral. One corollary to our combinatorial interpretation may be paraphrased as stating that one can “hear" the characteristic polynomial of a matroid.
DOI : 10.1090/S0894-0347-99-00316-1

Kook, W. 1, 2 ; Reiner, V. 1 ; Stanton, D. 1

1 School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
2 Department of Mathematics, The George Washington University, Washington DC 20052
@article{10_1090_S0894_0347_99_00316_1,
     author = {Kook, W. and Reiner, V. and Stanton, D.},
     title = {Combinatorial {Laplacians} of matroid complexes},
     journal = {Journal of the American Mathematical Society},
     pages = {129--148},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2000},
     doi = {10.1090/S0894-0347-99-00316-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00316-1/}
}
TY  - JOUR
AU  - Kook, W.
AU  - Reiner, V.
AU  - Stanton, D.
TI  - Combinatorial Laplacians of matroid complexes
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 129
EP  - 148
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00316-1/
DO  - 10.1090/S0894-0347-99-00316-1
ID  - 10_1090_S0894_0347_99_00316_1
ER  - 
%0 Journal Article
%A Kook, W.
%A Reiner, V.
%A Stanton, D.
%T Combinatorial Laplacians of matroid complexes
%J Journal of the American Mathematical Society
%D 2000
%P 129-148
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00316-1/
%R 10.1090/S0894-0347-99-00316-1
%F 10_1090_S0894_0347_99_00316_1
Kook, W.; Reiner, V.; Stanton, D. Combinatorial Laplacians of matroid complexes. Journal of the American Mathematical Society, Tome 13 (2000) no. 1, pp. 129-148. doi: 10.1090/S0894-0347-99-00316-1

[1] Bjã¶Rner, Anders The homology and shellability of matroids and geometric lattices 1992 226 283

[2] Bjã¶Rner, Anders, Kalai, Gil On 𝑓-vectors and homology 1989 63 80

[3] Brylawski, Thomas, Oxley, James The Tutte polynomial and its applications 1992 123 225

[4] Etienne, Gwihen, Vergnas, Michel Las External and internal elements of a matroid basis Discrete Math. 1998 111 119

[5] Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing 1996

[6] Friedman, J. Computing Betti numbers via combinatorial Laplacians Algorithmica 1998 331 346

[7] Sagan, Bruce E. The symmetric group 1991

[8] Solomon, Louis The Steinberg character of a finite group with 𝐵𝑁-pair 1969 213 221

[9] Stanley, Richard P. Some aspects of groups acting on finite posets J. Combin. Theory Ser. A 1982 132 161

Cité par Sources :