Algebraic families of nonzero elements of Shafarevich-Tate groups
Journal of the American Mathematical Society, Tome 13 (2000) no. 1, pp. 83-99

Voir la notice de l'article provenant de la source American Mathematical Society

Principal homogeneous spaces under an abelian variety defined over a number field $k$ may have rational points in all completions of the number field without having rational points over $k$. Such principal homogeneous spaces represent the nonzero elements of the Shafarevich-Tate group of the abelian variety. We produce nontrivial, one-parameter families of such principal homogeneous spaces. The total space of these families are counterexamples to the Hasse principle. We show these may be accounted for by the Brauer-Manin obstruction.
DOI : 10.1090/S0894-0347-99-00315-X

Colliot-Thélène, Jean-Louis 1 ; Poonen, Bjorn 1

1 C.N.R.S., Mathématiques, Bâtiment 425, Université de Paris-Sud, F-91405 Orsay, France
@article{10_1090_S0894_0347_99_00315_X,
     author = {Colliot-Th\~A{\textcopyright}l\~A{\textasciidieresis}ne, Jean-Louis and Poonen, Bjorn},
     title = {Algebraic families of nonzero elements of {Shafarevich-Tate} groups},
     journal = {Journal of the American Mathematical Society},
     pages = {83--99},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2000},
     doi = {10.1090/S0894-0347-99-00315-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00315-X/}
}
TY  - JOUR
AU  - Colliot-Thélène, Jean-Louis
AU  - Poonen, Bjorn
TI  - Algebraic families of nonzero elements of Shafarevich-Tate groups
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 83
EP  - 99
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00315-X/
DO  - 10.1090/S0894-0347-99-00315-X
ID  - 10_1090_S0894_0347_99_00315_X
ER  - 
%0 Journal Article
%A Colliot-Thélène, Jean-Louis
%A Poonen, Bjorn
%T Algebraic families of nonzero elements of Shafarevich-Tate groups
%J Journal of the American Mathematical Society
%D 2000
%P 83-99
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00315-X/
%R 10.1090/S0894-0347-99-00315-X
%F 10_1090_S0894_0347_99_00315_X
Colliot-Thélène, Jean-Louis; Poonen, Bjorn. Algebraic families of nonzero elements of Shafarevich-Tate groups. Journal of the American Mathematical Society, Tome 13 (2000) no. 1, pp. 83-99. doi: 10.1090/S0894-0347-99-00315-X

[1] Théorie des topos et cohomologie étale des schémas. Tome 3 1973

[2] Barth, W., Peters, C., Van De Ven, A. Compact complex surfaces 1984

[3] Bosch, Siegfried, Lã¼Tkebohmert, Werner, Raynaud, Michel Néron models 1990

[4] Brumer, Armand Remarques sur les couples de formes quadratiques C. R. Acad. Sci. Paris Sér. A-B 1978

[5] Cassels, J. W. S., Guy, M. J. T. On the Hasse principle for cubic surfaces Mathematika 1966 111 120

[6] Colliot-Thã©Lã¨Ne, J.-L. The Hasse principle in a pencil of algebraic varieties 1998 19 39

[7] Colliot-Thã©Lã¨Ne, J.-L., Sansuc, J.-J. La descente sur les variétés rationnelles 1980 223 237

[8] Colliot-Thã©Lã¨Ne, Jean-Louis, Kanevsky, Dimitri, Sansuc, Jean-Jacques Arithmétique des surfaces cubiques diagonales 1987 1 108

[9] Colliot-Thã©Lã¨Ne, Jean-Louis, Sansuc, Jean-Jacques, Swinnerton-Dyer, Peter Intersections of two quadrics and Châtelet surfaces. I J. Reine Angew. Math. 1987 37 107

[10] Deligne, P., Mumford, D. The irreducibility of the space of curves of given genus Inst. Hautes Études Sci. Publ. Math. 1969 75 109

[11] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III Inst. Hautes Études Sci. Publ. Math. 1966 255

[12] Grothendieck, Alexander Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses 1968 46 66

[13] Harari, David Méthode des fibrations et obstruction de Manin Duke Math. J. 1994 221 260

[14] Jannsen, Uwe Principe de Hasse cohomologique 1992 121 140

[15] Groupes de monodromie en géométrie algébrique. II 1973

[16] Lichtenbaum, Stephen Duality theorems for curves over 𝑝-adic fields Invent. Math. 1969 120 136

[17] Liu, Qing Modèles entiers des courbes hyperelliptiques sur un corps de valuation discrète Trans. Amer. Math. Soc. 1996 4577 4610

[18] Manin, Y. I. Le groupe de Brauer-Grothendieck en géométrie diophantienne 1971 401 411

[19] Manin, Yu. I. Cubic forms 1986

[20] Milne, James S. Étale cohomology 1980

[21] Milne, J. S. Arithmetic duality theorems 1986

[22] Ward, Morgan, Dilworth, R. P. The lattice theory of ova Ann. of Math. (2) 1939 600 608

[23] Mumford, D., Fogarty, J., Kirwan, F. Geometric invariant theory 1994

[24] Eagle, Albert Series for all the roots of a trinomial equation Amer. Math. Monthly 1939 422 425

[25] Scheiderer, Claus Real and étale cohomology 1994

[26] Serre, Jean-Pierre, Tate, John Good reduction of abelian varieties Ann. of Math. (2) 1968 492 517

[27] Swinnerton-Dyer, H. P. F. Two special cubic surfaces Mathematika 1962 54 56

[28] Swinnerton-Dyer, Peter The Brauer group of cubic surfaces Math. Proc. Cambridge Philos. Soc. 1993 449 460

[29] Van Geel, J., Yanchevskii, V. I. Indices of hyperelliptic curves over 𝑝-adic fields Manuscripta Math. 1998 317 333

Cité par Sources :