On a correspondence between cuspidal representations of 𝐺𝐿_{2𝑛} and 𝑆𝑝̃_{2𝑛}
Journal of the American Mathematical Society, Tome 12 (1999) no. 3, pp. 849-907

Voir la notice de l'article provenant de la source American Mathematical Society

Let $\eta$ be an irreducible, automorphic, self-dual, cuspidal representation of $\operatorname {GL}_{2n}(\mathbb A)$, where $\mathbb A$ is the adele ring of a number field $K$. Assume that $L^S(\eta ,\Lambda ^2,s)$ has a pole at $s=1$ and that $L(\eta , \frac 12)\neq 0$. Given a nontrivial character $\psi$ of $K\backslash \mathbb A$, we construct a nontrivial space of genuine and globally $\psi ^{-1}$-generic cusp forms $V_{\sigma _{\psi }(\eta )}$ on $\widetilde {\operatorname {Sp}}_{2n}(\mathbb A)$—the metaplectic cover of ${\operatorname {Sp}}_{2n}(\mathbb A)$. $V_{\sigma _{\psi }(\eta )}$ is invariant under right translations, and it contains all irreducible, automorphic, cuspidal (genuine) and $\psi ^{-1}$-generic representations of $\widetilde {\operatorname {Sp}}_{2n}(\mathbb A)$, which lift (“functorially, with respect to $\psi$") to $\eta$. We also present a local counterpart. Let $\tau$ be an irreducible, self-dual, supercuspidal representation of $\operatorname {GL}_{2n}(F)$, where $F$ is a $p$-adic field. Assume that $L(\tau ,\Lambda ^2,s)$ has a pole at $s=0$. Given a nontrivial character $\psi$ of $F$, we construct an irreducible, supercuspidal (genuine) $\psi ^{-1}$-generic representation $\sigma _\psi (\tau )$ of $\widetilde {\operatorname {Sp}}_{2n}(F)$, such that $\gamma (\sigma _\psi (\tau )\otimes \tau ,s,\psi )$ has a pole at $s=1$, and we prove that $\sigma _\psi (\tau )$ is the unique representation of $\widetilde {\operatorname {Sp}}_{2n}(F)$ satisfying these properties.
DOI : 10.1090/S0894-0347-99-00300-8

Ginzburg, David 1 ; Rallis, Stephen 2 ; Soudry, David 

1 School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
2 Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
@article{10_1090_S0894_0347_99_00300_8,
     author = {Ginzburg, David and Rallis, Stephen and Soudry, David},
     title = {On a correspondence between cuspidal representations of {\dh}{\textordmasculine}{\dh}{\textquestiondown}_{2{\dh}‘›} and {{\dh}‘†{\dh}‘\`Iƒ_{2{\dh}‘›}}},
     journal = {Journal of the American Mathematical Society},
     pages = {849--907},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1999},
     doi = {10.1090/S0894-0347-99-00300-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00300-8/}
}
TY  - JOUR
AU  - Ginzburg, David
AU  - Rallis, Stephen
AU  - Soudry, David
TI  - On a correspondence between cuspidal representations of 𝐺𝐿_{2𝑛} and 𝑆𝑝̃_{2𝑛}
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 849
EP  - 907
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00300-8/
DO  - 10.1090/S0894-0347-99-00300-8
ID  - 10_1090_S0894_0347_99_00300_8
ER  - 
%0 Journal Article
%A Ginzburg, David
%A Rallis, Stephen
%A Soudry, David
%T On a correspondence between cuspidal representations of 𝐺𝐿_{2𝑛} and 𝑆𝑝̃_{2𝑛}
%J Journal of the American Mathematical Society
%D 1999
%P 849-907
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00300-8/
%R 10.1090/S0894-0347-99-00300-8
%F 10_1090_S0894_0347_99_00300_8
Ginzburg, David; Rallis, Stephen; Soudry, David. On a correspondence between cuspidal representations of 𝐺𝐿_{2𝑛} and 𝑆𝑝̃_{2𝑛}. Journal of the American Mathematical Society, Tome 12 (1999) no. 3, pp. 849-907. doi: 10.1090/S0894-0347-99-00300-8

[1] Bernå¡Teä­N, I. N., Zelevinskiä­, A. V. Representations of the group 𝐺𝐿(𝑛,𝐹), where 𝐹 is a local non-Archimedean field Uspehi Mat. Nauk 1976 5 70

[2] Dixmier, Jacques, Malliavin, Paul Factorisations de fonctions et de vecteurs indéfiniment différentiables Bull. Sci. Math. (2) 1978 307 330

[3] Furusawa, Masaaki On the theta lift from 𝑆𝑂_{2𝑛+1} to ̃𝑆𝑝_{𝑛} J. Reine Angew. Math. 1995 87 110

[4] Gelbart, Stephen, Piatetski-Shapiro, Ilya, Rallis, Stephen Explicit constructions of automorphic 𝐿-functions 1987

[5] Ginzburg, D., Rallis, S., Soudry, D. A new construction of the inverse Shimura correspondence Internat. Math. Res. Notices 1997 349 357

[6] Ginzburg, David, Rallis, Stephen, Soudry, David Self-dual automorphic 𝐺𝐿_{𝑛} modules and construction of a backward lifting from 𝐺𝐿_{𝑛} to classical groups Internat. Math. Res. Notices 1997 687 701

[7] Jacquet, Hervã©, Rallis, Stephen Uniqueness of linear periods Compositio Math. 1996 65 123

[8] Jacquet, H., Shalika, J. A. On Euler products and the classification of automorphic representations. I Amer. J. Math. 1981 499 558

[9] Jacquet, Hervã©, Shalika, Joseph Exterior square 𝐿-functions 1990 143 226

[10] Må“Glin, Colette, Vignã©Ras, Marie-France, Waldspurger, Jean-Loup Correspondances de Howe sur un corps 𝑝-adique 1987

[11] Shahidi, Freydoon Twisted endoscopy and reducibility of induced representations for 𝑝-adic groups Duke Math. J. 1992 1 41

[12] Shahidi, Freydoon A proof of Langlands’ conjecture on Plancherel measures Ann. of Math. (2) 1990 273 330

[13] Savin, Gordan Local Shimura correspondence Math. Ann. 1988 185 190

[14] Soudry, David Rankin-Selberg convolutions for 𝑆𝑂_{2𝑙+1}×𝐺𝐿_{𝑛}: local theory Mem. Amer. Math. Soc. 1993

Cité par Sources :