An A₂ Bailey lemma and Rogers-Ramanujan-type identities
Journal of the American Mathematical Society, Tome 12 (1999) no. 3, pp. 677-702

Voir la notice de l'article provenant de la source American Mathematical Society

Using new $q$-functions recently introduced by Hatayama et al. and by (two of) the authors, we obtain an A$_2$ version of the classical Bailey lemma. We apply our result, which is distinct from the A$_2$ Bailey lemma of Milne and Lilly, to derive Rogers–Ramanujan-type identities for characters of the W$_3$ algebra.
DOI : 10.1090/S0894-0347-99-00297-0

Andrews, George 1 ; Schilling, Anne 2 ; Warnaar, S. 

1 Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802
2 Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
@article{10_1090_S0894_0347_99_00297_0,
     author = {Andrews, George and Schilling, Anne and Warnaar, S.},
     title = {An {A\^a‚‚} {Bailey} lemma and {Rogers-Ramanujan-type} identities},
     journal = {Journal of the American Mathematical Society},
     pages = {677--702},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1999},
     doi = {10.1090/S0894-0347-99-00297-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00297-0/}
}
TY  - JOUR
AU  - Andrews, George
AU  - Schilling, Anne
AU  - Warnaar, S.
TI  - An A₂ Bailey lemma and Rogers-Ramanujan-type identities
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 677
EP  - 702
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00297-0/
DO  - 10.1090/S0894-0347-99-00297-0
ID  - 10_1090_S0894_0347_99_00297_0
ER  - 
%0 Journal Article
%A Andrews, George
%A Schilling, Anne
%A Warnaar, S.
%T An A₂ Bailey lemma and Rogers-Ramanujan-type identities
%J Journal of the American Mathematical Society
%D 1999
%P 677-702
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00297-0/
%R 10.1090/S0894-0347-99-00297-0
%F 10_1090_S0894_0347_99_00297_0
Andrews, George; Schilling, Anne; Warnaar, S. An A₂ Bailey lemma and Rogers-Ramanujan-type identities. Journal of the American Mathematical Society, Tome 12 (1999) no. 3, pp. 677-702. doi: 10.1090/S0894-0347-99-00297-0

[1] Agarwal, A. K., Andrews, G. E., Bressoud, D. M. The Bailey lattice J. Indian Math. Soc. (N.S.) 1987

[2] Andrews, George E. An analytic generalization of the Rogers-Ramanujan identities for odd moduli Proc. Nat. Acad. Sci. U.S.A. 1974 4082 4085

[3] Andrews, George E. The theory of partitions 1976

[4] Andrews, George E. Multiple series Rogers-Ramanujan type identities Pacific J. Math. 1984 267 283

[5] Andrews, George E., Baxter, R. J., Bressoud, D. M., Burge, W. H., Forrester, P. J., Viennot, G. Partitions with prescribed hook differences European J. Combin. 1987 341 350

[6] Birkhoff, Garrett, Ward, Morgan A characterization of Boolean algebras Ann. of Math. (2) 1939 609 610

[7] Bressoud, David M. A generalization of the Rogers-Ramanujan identities for all moduli J. Combin. Theory Ser. A 1979 64 68

[8] Bressoud, David M. An analytic generalization of the Rogers-Ramanujan identities with interpretation Quart. J. Math. Oxford Ser. (2) 1980 385 399

[9] Bressoud, David M. Analytic and combinatorial generalizations of the Rogers-Ramanujan identities Mem. Amer. Math. Soc. 1980 54

[10] Bressoud, D. M. The Bailey lattice: an introduction 1988 57 67

[11] Dyson, Freeman J. Missed opportunities Bull. Amer. Math. Soc. 1972 635 652

[12] Kumar, Sunil, Prasad, Rakesh, Benjwal, M. P., Joshi, D. C. Classical Yang-Mills theory in presence of extended electric and magnetic sources Acta Phys. Polon. B 1987 1087 1097

[13] Gasper, George, Rahman, Mizan Basic hypergeometric series 1990

[14] Gessel, Ira M., Krattenthaler, C. Cylindric partitions Trans. Amer. Math. Soc. 1997 429 479

[15] Gordon, Basil A combinatorial generalization of the Rogers-Ramanujan identities Amer. J. Math. 1961 393 399

[16] Sispanov, Sergio Generalización del teorema de Laguerre Bol. Mat. 1939 113 117

[17] Jimbo, Michio, Miwa, Tetsuji, Okado, Masato Local state probabilities of solvable lattice models: an 𝐴⁽¹⁾_{𝑛-1} family Nuclear Phys. B 1988 74 108

[18] Kirillov, Anatol N. Dilogarithm identities Progr. Theoret. Phys. Suppl. 1995 61 142

[19] Krattenthaler, Christian Generating functions for plane partitions of a given shape Manuscripta Math. 1990 173 201

[20] Kuniba, Atsuo, Nakanishi, Tomoki, Suzuki, Junji Ferro- and antiferro-magnetizations in RSOS models Nuclear Phys. B 1991 750 774

[21] Macdonald, I. G. Affine root systems and Dedekind’s 𝜂-function Invent. Math. 1972 91 143

[22] Macdonald, I. G. Symmetric functions and Hall polynomials 1995

[23] Milne, S. C. Classical partition functions and the 𝑈(𝑛+1) Rogers-Selberg identity Discrete Math. 1992 199 246

[24] Milne, S. C. A 𝑞-analog of a Whipple’s transformation for hypergeometric series in 𝑈(𝑛) Adv. Math. 1994 1 76

[25] Milne, Stephen C., Lilly, Glenn M. The 𝐴_{𝑙} and 𝐶_{𝑙} Bailey transform and lemma Bull. Amer. Math. Soc. (N.S.) 1992 258 263

[26] Milne, Stephen C., Lilly, Glenn M. Consequences of the 𝐴_{𝑙} and 𝐶_{𝑙} Bailey transform and Bailey lemma Discrete Math. 1995 319 346

[27] Mizoguchi, S. The structure of representation for the 𝑊₍₃₎ minimal model Internat. J. Modern Phys. A 1991 133 162

[28] Paule, Peter On identities of the Rogers-Ramanujan type J. Math. Anal. Appl. 1985 255 284

Cité par Sources :