The Dolbeault complex in infinite dimensions II
Journal of the American Mathematical Society, Tome 12 (1999) no. 3, pp. 775-793

Voir la notice de l'article provenant de la source American Mathematical Society

We study the equation $\overline {\partial }u=f$ on a ball $B(R)\subset l^{1}$, and prove that it is solvable if $f$ is a Lipschitz continuous, closed $(0,1)$-form.
DOI : 10.1090/S0894-0347-99-00296-9

Lempert, László 1

1 Department of Mathematics, Purdue University, West Lafayette, Indiana 47907–1395
@article{10_1090_S0894_0347_99_00296_9,
     author = {Lempert, L\~A{\textexclamdown}szl\~A{\textthreesuperior}},
     title = {The {Dolbeault} complex in infinite dimensions {II}},
     journal = {Journal of the American Mathematical Society},
     pages = {775--793},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1999},
     doi = {10.1090/S0894-0347-99-00296-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00296-9/}
}
TY  - JOUR
AU  - Lempert, László
TI  - The Dolbeault complex in infinite dimensions II
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 775
EP  - 793
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00296-9/
DO  - 10.1090/S0894-0347-99-00296-9
ID  - 10_1090_S0894_0347_99_00296_9
ER  - 
%0 Journal Article
%A Lempert, László
%T The Dolbeault complex in infinite dimensions II
%J Journal of the American Mathematical Society
%D 1999
%P 775-793
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00296-9/
%R 10.1090/S0894-0347-99-00296-9
%F 10_1090_S0894_0347_99_00296_9
Lempert, László. The Dolbeault complex in infinite dimensions II. Journal of the American Mathematical Society, Tome 12 (1999) no. 3, pp. 775-793. doi: 10.1090/S0894-0347-99-00296-9

[1] Deville, Robert, Godefroy, Gilles, Zizler, Vã¡Clav Smoothness and renormings in Banach spaces 1993

[2] Dineen, Seã¡N Complex analysis in locally convex spaces 1981

[3] Grauert, Hans, Lieb, Ingo Das Ramirezsche Integral und die Lösung der Gleichung ∂̄𝑓 Rice Univ. Stud. 1970

[4] Henkin, G. M. Integral representation of functions in strongly pseudoconvex regions, and applications to the \overline∂-problem Mat. Sb. (N.S.) 1970 300 308

[5] Hã¶Rmander, Lars An introduction to complex analysis in several variables 1990

[6] Nakayama, Tadasi On Frobeniusean algebras. I Ann. of Math. (2) 1939 611 633

[7] Mazet, Pierre Analytic sets in locally convex spaces 1984

[8] Raboin, Pierre Le problème du ∂̄ sur un espace de Hilbert Bull. Soc. Math. France 1979 225 240

[9] Ryan, Raymond A. Holomorphic mappings on 𝑙₁ Trans. Amer. Math. Soc. 1987 797 811

Cité par Sources :