Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_99_00293_3,
     author = {Goncharov, Alexander},
     title = {Volumes of hyperbolic manifolds and mixed {Tate} motives},
     journal = {Journal of the American Mathematical Society},
     pages = {569--618},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1999},
     doi = {10.1090/S0894-0347-99-00293-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00293-3/}
}
                      
                      
                    TY - JOUR AU - Goncharov, Alexander TI - Volumes of hyperbolic manifolds and mixed Tate motives JO - Journal of the American Mathematical Society PY - 1999 SP - 569 EP - 618 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00293-3/ DO - 10.1090/S0894-0347-99-00293-3 ID - 10_1090_S0894_0347_99_00293_3 ER -
%0 Journal Article %A Goncharov, Alexander %T Volumes of hyperbolic manifolds and mixed Tate motives %J Journal of the American Mathematical Society %D 1999 %P 569-618 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00293-3/ %R 10.1090/S0894-0347-99-00293-3 %F 10_1090_S0894_0347_99_00293_3
Goncharov, Alexander. Volumes of hyperbolic manifolds and mixed Tate motives. Journal of the American Mathematical Society, Tome 12 (1999) no. 2, pp. 569-618. doi: 10.1090/S0894-0347-99-00293-3
[1] Analytic structure of Schläfli function Nagoya Math. J. 1977 1 16
[2] Height pairing between algebraic cycles 1987 1 25
[3] Higher regulators and values of ð¿-functions 1984 181 238
[4] , , Faisceaux pervers 1982 5 171
[5] , Interprétation motivique de la conjecture de Zagier reliant polylogarithmes et régulateurs 1994 97 121
[6] , , Notes on motivic cohomology Duke Math. J. 1987 679 710
[7] , , , Aomoto dilogarithms, mixed Hodge structures and motivic cohomology of pairs of triangles on the plane 1990 135 172
[8] Algebraic cycles and higher ð¾-theory Adv. in Math. 1986 267 304
[9] The moving lemma for higher Chow groups J. Algebraic Geom. 1994 537 568
[10] Applications of the dilogarithm function in algebraic ð¾-theory and algebraic geometry 1978 103 114
[11] Inhaltsmessung im ð â konstanter Krümmung Arch. Math. (Basel) 1960 298 309
[12] Sur les inverses des éléments dérivables dans un anneau abstrait C. R. Acad. Sci. Paris 1939 285 287
[13] Cohomologie de ðð¿_{ð} et valeurs de fonctions zeta aux points entiers Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1977 613 636
[14] ð-structures in algebraic ð¾-theory and cyclic homology ð¾-Theory 1990/91 591 606
[15] Series for all the roots of the equation (ð§-ð)^{ð} Amer. Math. Monthly 1939 425 428
[16] Algebra of polytopes and homology of flag complexes Osaka J. Math. 1982 599 641
[17] The dilogarithm as a characteristic class for flat bundles J. Pure Appl. Algebra 1987 137 164
[18] , , Homology of classical Lie groups made discrete. II. ð»â,ð»â, and relations with scissors congruences J. Algebra 1988 215 260
[19] Scissors congruences. I. The Gauss-Bonnet map Math. Scand. 1981
[20] , Homology of Euclidean groups of motions made discrete and Euclidean scissors congruences Acta Math. 1990 1 27
[21] , Euclidean decompositions of noncompact hyperbolic manifolds J. Differential Geom. 1988 67 80
[22] , Additive ð¾-theory 1987 67 209
[23] Polylogarithms and motivic Galois groups 1994 43 96
[24] Geometry of configurations, polylogarithms, and motivic cohomology Adv. Math. 1995 197 318
[25] Relative algebraic ð¾-theory and cyclic homology Ann. of Math. (2) 1986 347 402
[26] On the volumes of hyperbolic 5-orthoschemes and the trilogarithm Comment. Math. Helv. 1992 648 663
[27] Volumes in hyperbolic 5-space Geom. Funct. Anal. 1995 640 667
[28] Homology 1963
[29] , Volumes of hyperbolic three-manifolds Topology 1985 307 332
[30] Regulators, algebraic cycles, and values of ð¿-functions 1989 183 310
[31] Hilbertâs third problem: scissors congruence 1979
[32] Scissors congruences. I. The Gauss-Bonnet map Math. Scand. 1981
[33] Homology of classical Lie groups made discrete. III J. Pure Appl. Algebra 1989 269 312
[34] , Second homology of Lie groups made discrete Comm. Algebra 1977 611 642
[35] Sur les inverses des éléments dérivables dans un anneau abstrait C. R. Acad. Sci. Paris 1939 285 287
[36] ð¾â of a field, and the Bloch group Trudy Mat. Inst. Steklov. 1990
[37] Polylogarithms, Dedekind zeta functions and the algebraic ð¾-theory of fields 1991 391 430
[38] The remarkable dilogarithm J. Math. Phys. Sci. 1988 131 145
Cité par Sources :
