Volumes of hyperbolic manifolds and mixed Tate motives
Journal of the American Mathematical Society, Tome 12 (1999) no. 2, pp. 569-618

Voir la notice de l'article provenant de la source American Mathematical Society

Two different constructions of an invariant of an odd-dimensional hyperbolic manifold with values in $K_{2n-1}(\overline {\mathbb Q})\otimes \mathbb Q$ are given. We prove that the volume of the manifold equals the value of the Borel regulator on this invariant. The scissors congruence groups in noneuclidean geometries are studied and related to mixed Tate motives and algebraic K-theory of $\mathbb C$. We contribute to the general theory of mixed Hodge structures by introducing for Hodge-Tate structures the big period map with values in $\mathbb C \otimes \mathbb C^*(n-2)$.
DOI : 10.1090/S0894-0347-99-00293-3

Goncharov, Alexander 1

1 Department of Mathematics, Brown University, Providence, Rhode Island 02912
@article{10_1090_S0894_0347_99_00293_3,
     author = {Goncharov, Alexander},
     title = {Volumes of hyperbolic manifolds and mixed {Tate} motives},
     journal = {Journal of the American Mathematical Society},
     pages = {569--618},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1999},
     doi = {10.1090/S0894-0347-99-00293-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00293-3/}
}
TY  - JOUR
AU  - Goncharov, Alexander
TI  - Volumes of hyperbolic manifolds and mixed Tate motives
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 569
EP  - 618
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00293-3/
DO  - 10.1090/S0894-0347-99-00293-3
ID  - 10_1090_S0894_0347_99_00293_3
ER  - 
%0 Journal Article
%A Goncharov, Alexander
%T Volumes of hyperbolic manifolds and mixed Tate motives
%J Journal of the American Mathematical Society
%D 1999
%P 569-618
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00293-3/
%R 10.1090/S0894-0347-99-00293-3
%F 10_1090_S0894_0347_99_00293_3
Goncharov, Alexander. Volumes of hyperbolic manifolds and mixed Tate motives. Journal of the American Mathematical Society, Tome 12 (1999) no. 2, pp. 569-618. doi: 10.1090/S0894-0347-99-00293-3

[1] Aomoto, Kazuhiko Analytic structure of Schläfli function Nagoya Math. J. 1977 1 16

[2] Beä­Linson, A. A. Height pairing between algebraic cycles 1987 1 25

[3] Beä­Linson, A. A. Higher regulators and values of 𝐿-functions 1984 181 238

[4] Beä­Linson, A. A., Bernstein, J., Deligne, P. Faisceaux pervers 1982 5 171

[5] Beä­Linson, A., Deligne, P. Interprétation motivique de la conjecture de Zagier reliant polylogarithmes et régulateurs 1994 97 121

[6] Beä­Linson, A., Macpherson, R., Schechtman, V. Notes on motivic cohomology Duke Math. J. 1987 679 710

[7] Beä­Linson, A. A., Goncharov, A. B., Schechtman, V. V., Varchenko, A. N. Aomoto dilogarithms, mixed Hodge structures and motivic cohomology of pairs of triangles on the plane 1990 135 172

[8] Bloch, Spencer Algebraic cycles and higher 𝐾-theory Adv. in Math. 1986 267 304

[9] Bloch, S. The moving lemma for higher Chow groups J. Algebraic Geom. 1994 537 568

[10] Bloch, Spencer Applications of the dilogarithm function in algebraic 𝐾-theory and algebraic geometry 1978 103 114

[11] Bã¶Hm, Johannes Inhaltsmessung im 𝑅₅ konstanter Krümmung Arch. Math. (Basel) 1960 298 309

[12] Hebroni, P. Sur les inverses des éléments dérivables dans un anneau abstrait C. R. Acad. Sci. Paris 1939 285 287

[13] Borel, Armand Cohomologie de 𝑆𝐿_{𝑛} et valeurs de fonctions zeta aux points entiers Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1977 613 636

[14] Cathelineau, Jean-Louis 𝜆-structures in algebraic 𝐾-theory and cyclic homology 𝐾-Theory 1990/91 591 606

[15] Eagle, Albert Series for all the roots of the equation (𝑧-𝑎)^{𝑚} Amer. Math. Monthly 1939 425 428

[16] Dupont, Johan L. Algebra of polytopes and homology of flag complexes Osaka J. Math. 1982 599 641

[17] Dupont, Johan L. The dilogarithm as a characteristic class for flat bundles J. Pure Appl. Algebra 1987 137 164

[18] Dupont, Johan L., Parry, Walter, Sah, Chih-Han Homology of classical Lie groups made discrete. II. 𝐻₂,𝐻₃, and relations with scissors congruences J. Algebra 1988 215 260

[19] Sah, Chih Han Scissors congruences. I. The Gauss-Bonnet map Math. Scand. 1981

[20] Dupont, Johan L., Sah, Chih-Han Homology of Euclidean groups of motions made discrete and Euclidean scissors congruences Acta Math. 1990 1 27

[21] Epstein, D. B. A., Penner, R. C. Euclidean decompositions of noncompact hyperbolic manifolds J. Differential Geom. 1988 67 80

[22] Feä­Gin, B. L., Tsygan, B. L. Additive 𝐾-theory 1987 67 209

[23] Goncharov, A. B. Polylogarithms and motivic Galois groups 1994 43 96

[24] Goncharov, A. B. Geometry of configurations, polylogarithms, and motivic cohomology Adv. Math. 1995 197 318

[25] Goodwillie, Thomas G. Relative algebraic 𝐾-theory and cyclic homology Ann. of Math. (2) 1986 347 402

[26] Kellerhals, Ruth On the volumes of hyperbolic 5-orthoschemes and the trilogarithm Comment. Math. Helv. 1992 648 663

[27] Kellerhals, R. Volumes in hyperbolic 5-space Geom. Funct. Anal. 1995 640 667

[28] Mac Lane, Saunders Homology 1963

[29] Neumann, Walter D., Zagier, Don Volumes of hyperbolic three-manifolds Topology 1985 307 332

[30] Ramakrishnan, Dinakar Regulators, algebraic cycles, and values of 𝐿-functions 1989 183 310

[31] Sah, C. H. Hilbert’s third problem: scissors congruence 1979

[32] Sah, Chih Han Scissors congruences. I. The Gauss-Bonnet map Math. Scand. 1981

[33] Sah, Chih-Han Homology of classical Lie groups made discrete. III J. Pure Appl. Algebra 1989 269 312

[34] Sah, Chih Han, Wagoner, John B. Second homology of Lie groups made discrete Comm. Algebra 1977 611 642

[35] Hebroni, P. Sur les inverses des éléments dérivables dans un anneau abstrait C. R. Acad. Sci. Paris 1939 285 287

[36] Suslin, A. A. 𝐾₃ of a field, and the Bloch group Trudy Mat. Inst. Steklov. 1990

[37] Zagier, Don Polylogarithms, Dedekind zeta functions and the algebraic 𝐾-theory of fields 1991 391 430

[38] Zagier, D. The remarkable dilogarithm J. Math. Phys. Sci. 1988 131 145

Cité par Sources :