Voir la notice de l'article provenant de la source American Mathematical Society
Liu, Tai-Ping 1 ; Yang, Tong 2
@article{10_1090_S0894_0347_99_00292_1,
author = {Liu, Tai-Ping and Yang, Tong},
title = {{\dh}{\textquestiondown}\^a stability for {2\~A2} systems of hyperbolic conservation laws},
journal = {Journal of the American Mathematical Society},
pages = {729--774},
publisher = {mathdoc},
volume = {12},
number = {3},
year = {1999},
doi = {10.1090/S0894-0347-99-00292-1},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00292-1/}
}
TY - JOUR AU - Liu, Tai-Ping AU - Yang, Tong TI - ð¿â stability for 2Ã2 systems of hyperbolic conservation laws JO - Journal of the American Mathematical Society PY - 1999 SP - 729 EP - 774 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00292-1/ DO - 10.1090/S0894-0347-99-00292-1 ID - 10_1090_S0894_0347_99_00292_1 ER -
%0 Journal Article %A Liu, Tai-Ping %A Yang, Tong %T ð¿â stability for 2Ã2 systems of hyperbolic conservation laws %J Journal of the American Mathematical Society %D 1999 %P 729-774 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00292-1/ %R 10.1090/S0894-0347-99-00292-1 %F 10_1090_S0894_0347_99_00292_1
Liu, Tai-Ping; Yang, Tong. ð¿â stability for 2Ã2 systems of hyperbolic conservation laws. Journal of the American Mathematical Society, Tome 12 (1999) no. 3, pp. 729-774. doi: 10.1090/S0894-0347-99-00292-1
[1] , The semigroup generated by 2Ã2 conservation laws Arch. Rational Mech. Anal. 1995 1 75
[2] A locally contractive metric for systems of conservation laws Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1995 109 135
[3] Polygonal approximations of solutions of the initial value problem for a conservation law J. Math. Anal. Appl. 1972 33 41
[4] Entropy and the stability of classical solutions of hyperbolic systems of conservation laws 1996 48 69
[5] A class of orthogonal functions on plane curves Ann. of Math. (2) 1939 521 532
[6] Global existence of solutions to nonlinear hyperbolic systems of conservation laws J. Differential Equations 1976 187 212
[7] Solutions in the large for nonlinear hyperbolic systems of equations Comm. Pure Appl. Math. 1965 697 715
[8] , Decay of solutions of systems of hyperbolic conservation laws Bull. Amer. Math. Soc. 1967 105
[9] Hyperbolic systems of conservation laws. II Comm. Pure Appl. Math. 1957 537 566
[10] Shock waves and entropy 1971 603 634
[11] , Uniqueness via the adjoint problems for systems of conservation laws Comm. Pure Appl. Math. 1993 1499 1533
[12] The deterministic version of the Glimm scheme Comm. Math. Phys. 1977 135 148
[13] Uniqueness of weak solutions of the Cauchy problem for general 2Ã2 conservation laws J. Differential Equations 1976 369 388
[14] , Uniform ð¿â boundedness of solutions of hyperbolic conservation laws Methods Appl. Anal. 1997 339 355
[15] On the uniqueness of the generalized solution of the Cauchy problem for a non-linear system of equations occurring in mechanics Uspehi Mat. Nauk (N.S.) 1957 169 176
[16] Shock waves and reaction-diffusion equations 1983
[17] No ð¿â-contractive metrics for systems of conservation laws Trans. Amer. Math. Soc. 1985 471 480
Cité par Sources :