𝐿₁ stability for 2×2 systems of hyperbolic conservation laws
Journal of the American Mathematical Society, Tome 12 (1999) no. 3, pp. 729-774

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper, we study the evolution of the $L_1$ distance of solutions for systems of $2\times 2$ hyperbolic conservation laws. For the approximate solutions constructed by Glimm’s scheme with the aid of the wave tracing method, we introduce a nonlinear functional which is equivalent to the $L_1$ distance between solutions, nonincreasing in time, and expressed explicitly in terms of the wave patterns of the solutions. This functional reveals the nonlinear mechanism of wave interactions and coupling which affect the $L_1$ topology.
DOI : 10.1090/S0894-0347-99-00292-1

Liu, Tai-Ping 1 ; Yang, Tong 2

1 Department of Mathematics, Stanford University, Stanford, California 94305-2060
2 Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong
@article{10_1090_S0894_0347_99_00292_1,
     author = {Liu, Tai-Ping and Yang, Tong},
     title = {{\dh}{\textquestiondown}\^a‚ stability for {2\~A—2} systems of hyperbolic conservation laws},
     journal = {Journal of the American Mathematical Society},
     pages = {729--774},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1999},
     doi = {10.1090/S0894-0347-99-00292-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00292-1/}
}
TY  - JOUR
AU  - Liu, Tai-Ping
AU  - Yang, Tong
TI  - 𝐿₁ stability for 2×2 systems of hyperbolic conservation laws
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 729
EP  - 774
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00292-1/
DO  - 10.1090/S0894-0347-99-00292-1
ID  - 10_1090_S0894_0347_99_00292_1
ER  - 
%0 Journal Article
%A Liu, Tai-Ping
%A Yang, Tong
%T 𝐿₁ stability for 2×2 systems of hyperbolic conservation laws
%J Journal of the American Mathematical Society
%D 1999
%P 729-774
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00292-1/
%R 10.1090/S0894-0347-99-00292-1
%F 10_1090_S0894_0347_99_00292_1
Liu, Tai-Ping; Yang, Tong. 𝐿₁ stability for 2×2 systems of hyperbolic conservation laws. Journal of the American Mathematical Society, Tome 12 (1999) no. 3, pp. 729-774. doi: 10.1090/S0894-0347-99-00292-1

[1] Bressan, Alberto, Colombo, Rinaldo M. The semigroup generated by 2×2 conservation laws Arch. Rational Mech. Anal. 1995 1 75

[2] Bressan, Alberto A locally contractive metric for systems of conservation laws Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1995 109 135

[3] Dafermos, Constantine M. Polygonal approximations of solutions of the initial value problem for a conservation law J. Math. Anal. Appl. 1972 33 41

[4] Dafermos, C. M. Entropy and the stability of classical solutions of hyperbolic systems of conservation laws 1996 48 69

[5] Jackson, Dunham A class of orthogonal functions on plane curves Ann. of Math. (2) 1939 521 532

[6] Diperna, Ronald J. Global existence of solutions to nonlinear hyperbolic systems of conservation laws J. Differential Equations 1976 187 212

[7] Glimm, James Solutions in the large for nonlinear hyperbolic systems of equations Comm. Pure Appl. Math. 1965 697 715

[8] Glimm, J., Lax, P. D. Decay of solutions of systems of hyperbolic conservation laws Bull. Amer. Math. Soc. 1967 105

[9] Lax, P. D. Hyperbolic systems of conservation laws. II Comm. Pure Appl. Math. 1957 537 566

[10] Lax, Peter Shock waves and entropy 1971 603 634

[11] Lefloch, Philippe, Xin, Zhou Ping Uniqueness via the adjoint problems for systems of conservation laws Comm. Pure Appl. Math. 1993 1499 1533

[12] Liu, Tai Ping The deterministic version of the Glimm scheme Comm. Math. Phys. 1977 135 148

[13] Liu, Tai Ping Uniqueness of weak solutions of the Cauchy problem for general 2×2 conservation laws J. Differential Equations 1976 369 388

[14] Liu, Tai-Ping, Yang, Tong Uniform 𝐿₁ boundedness of solutions of hyperbolic conservation laws Methods Appl. Anal. 1997 339 355

[15] Oleä­Nik, O. A. On the uniqueness of the generalized solution of the Cauchy problem for a non-linear system of equations occurring in mechanics Uspehi Mat. Nauk (N.S.) 1957 169 176

[16] Smoller, Joel Shock waves and reaction-diffusion equations 1983

[17] Temple, Blake No 𝐿₁-contractive metrics for systems of conservation laws Trans. Amer. Math. Soc. 1985 471 480

Cité par Sources :