Simple groups, permutation groups, and probability
Journal of the American Mathematical Society, Tome 12 (1999) no. 2, pp. 497-520

Voir la notice de l'article provenant de la source American Mathematical Society

We derive a new bound for the minimal degree of an almost simple primitive permutation group, and settle a conjecture of Cameron and Kantor concerning the base size of such a group. Additional results concern random generation of simple groups, and the so-called genus conjecture of Guralnick and Thompson. Our proofs are based on probabilistic arguments, together with a new result concerning the size of the intersection of a maximal subgroup of a classical group with a conjugacy class of elements.
DOI : 10.1090/S0894-0347-99-00288-X

Liebeck, Martin 1 ; Shalev, Aner 2

1 Department of Mathematics, Imperial College, London SW7 2BZ, England
2 Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
@article{10_1090_S0894_0347_99_00288_X,
     author = {Liebeck, Martin and Shalev, Aner},
     title = {Simple groups, permutation groups, and probability},
     journal = {Journal of the American Mathematical Society},
     pages = {497--520},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1999},
     doi = {10.1090/S0894-0347-99-00288-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00288-X/}
}
TY  - JOUR
AU  - Liebeck, Martin
AU  - Shalev, Aner
TI  - Simple groups, permutation groups, and probability
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 497
EP  - 520
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00288-X/
DO  - 10.1090/S0894-0347-99-00288-X
ID  - 10_1090_S0894_0347_99_00288_X
ER  - 
%0 Journal Article
%A Liebeck, Martin
%A Shalev, Aner
%T Simple groups, permutation groups, and probability
%J Journal of the American Mathematical Society
%D 1999
%P 497-520
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00288-X/
%R 10.1090/S0894-0347-99-00288-X
%F 10_1090_S0894_0347_99_00288_X
Liebeck, Martin; Shalev, Aner. Simple groups, permutation groups, and probability. Journal of the American Mathematical Society, Tome 12 (1999) no. 2, pp. 497-520. doi: 10.1090/S0894-0347-99-00288-X

[1] Aschbacher, M. On the maximal subgroups of the finite classical groups Invent. Math. 1984 469 514

[2] Aschbacher, Michael, Seitz, Gary M. Involutions in Chevalley groups over fields of even order Nagoya Math. J. 1976 1 91

[3] Babai, Lã¡Szlã³ On the order of uniprimitive permutation groups Ann. of Math. (2) 1981 553 568

[4] Cameron, Peter J. Some open problems on permutation groups 1992 340 350

[5] Cameron, Peter J. Permutation groups 1995 611 645

[6] Cameron, Peter J., Kantor, William M. Random permutations: some group-theoretic aspects Combin. Probab. Comput. 1993 257 262

[7] Curtis, C. W., Iwahori, N., Kilmoyer, R. Hecke algebras and characters of parabolic type of finite groups with (𝐵, 𝑁)-pairs Inst. Hautes Études Sci. Publ. Math. 1971 81 116

[8] Dixon, John D. The probability of generating the symmetric group Math. Z. 1969 199 205

[9] Gorenstein, Daniel, Lyons, Richard The local structure of finite groups of characteristic 2 type Mem. Amer. Math. Soc. 1983

[10] Guralnick, Robert M. The genus of a permutation group 1992 351 363

[11] Guralnick, Robert M., Kantor, William M., Saxl, Jan The probability of generating a classical group Comm. Algebra 1994 1395 1402

[12] Guralnick, Robert M., Thompson, John G. Finite groups of genus zero J. Algebra 1990 303 341

[13] Hall, J. I., Liebeck, Martin W., Seitz, Gary M. Generators for finite simple groups, with applications to linear groups Quart. J. Math. Oxford Ser. (2) 1992 441 458

[14] Kantor, William M., Lubotzky, Alexander The probability of generating a finite classical group Geom. Dedicata 1990 67 87

[15] Kleidman, Peter, Liebeck, Martin The subgroup structure of the finite classical groups 1990

[16] Liebeck, Martin W. On the orders of maximal subgroups of the finite classical groups Proc. London Math. Soc. (3) 1985 426 446

[17] Liebeck, Martin W. On minimal degrees and base sizes of primitive permutation groups Arch. Math. (Basel) 1984 11 15

[18] Liebeck, Martin W., Wayman Purvis, Chris On the genus of a finite classical group Bull. London Math. Soc. 1997 159 164

[19] Liebeck, Martin W., Saxl, Jan Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces Proc. London Math. Soc. (3) 1991 266 314

[20] Liebeck, Martin W., Shalev, Aner The probability of generating a finite simple group Geom. Dedicata 1995 103 113

[21] Liebeck, Martin W., Shalev, Aner Classical groups, probabilistic methods, and the (2,3)-generation problem Ann. of Math. (2) 1996 77 125

[22] Liebeck, Martin W., Praeger, Cheryl E., Saxl, Jan On the 2-closures of finite permutation groups J. London Math. Soc. (2) 1988 241 252

[23] Magnus, Wilhelm Noneuclidean tesselations and their groups 1974

[24] Shalev, Aner Random generation of simple groups by two conjugate elements Bull. London Math. Soc. 1997 571 576

[25] Wall, G. E. On the conjugacy classes in the unitary, symplectic and orthogonal groups J. Austral. Math. Soc. 1963 1 62

Cité par Sources :